These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


165 related items for PubMed ID: 37094442

  • 1. Peracetic acid-based UVA photo-Fenton reaction: Dominant role of high-valent iron species toward efficient selective degradation of emerging micropollutants.
    Li X, Zhu W, Sun SP.
    J Hazard Mater; 2023 Jul 15; 454():131448. PubMed ID: 37094442
    [Abstract] [Full Text] [Related]

  • 2. Enhanced Degradation of Micropollutants in a Peracetic Acid-Fe(III) System with Picolinic Acid.
    Kim J, Wang J, Ashley DC, Sharma VK, Huang CH.
    Environ Sci Technol; 2022 Apr 05; 56(7):4437-4446. PubMed ID: 35319885
    [Abstract] [Full Text] [Related]

  • 3. Peracetic acid activation by mechanochemically sulfidated zero valent iron for micropollutants degradation: Enhancement mechanism and strategy for extending applicability.
    He MF, Li WQ, Xie ZH, Yang SR, He CS, Xiong ZK, Du Y, Liu Y, Jiang F, Mu Y, Lai B.
    Water Res; 2022 Aug 15; 222():118887. PubMed ID: 35907302
    [Abstract] [Full Text] [Related]

  • 4. UVA-LED-Assisted Activation of the Ferrate(VI) Process for Enhanced Micropollutant Degradation: Important Role of Ferrate(IV) and Ferrate(V).
    Yang T, Mai J, Cheng H, Zhu M, Wu S, Tang L, Liang P, Jia J, Ma J.
    Environ Sci Technol; 2022 Jan 18; 56(2):1221-1232. PubMed ID: 34961311
    [Abstract] [Full Text] [Related]

  • 5. Efficient degradation of pharmaceutical micropollutants in water and wastewater by FeIII-NTA-catalyzed neutral photo-Fenton process.
    Dong W, Jin Y, Zhou K, Sun SP, Li Y, Chen XD.
    Sci Total Environ; 2019 Oct 20; 688():513-520. PubMed ID: 31726571
    [Abstract] [Full Text] [Related]

  • 6. Doped Cu0 and sulfidation induced transition from R-O• to •OH in peracetic acid activation by sulfidated nano zero-valent iron-copper.
    Xu W, Huang D, Wang G, Zhou W, Li R, Huang H, Du L, Xiao R, Chen S.
    Water Res; 2024 Jun 01; 256():121621. PubMed ID: 38642536
    [Abstract] [Full Text] [Related]

  • 7. Hydroxylamine enhanced Fe(II)-activated peracetic acid process for diclofenac degradation: Efficiency, mechanism and effects of various parameters.
    Lin J, Zou J, Cai H, Huang Y, Li J, Xiao J, Yuan B, Ma J.
    Water Res; 2021 Dec 01; 207():117796. PubMed ID: 34736001
    [Abstract] [Full Text] [Related]

  • 8. Picolinic Acid-Mediated Catalysis of Mn(II) for Peracetic Acid Oxidation Processes: Formation of High-Valent Mn Species.
    Kim J, Wang J, Ashley DC, Sharma VK, Huang CH.
    Environ Sci Technol; 2023 Nov 28; 57(47):18929-18939. PubMed ID: 37224105
    [Abstract] [Full Text] [Related]

  • 9. Protocatechuic acid enhanced the selective degradation of sulfonamide antibiotics in Fe(III)/peracetic acid process under actually neutral pH conditions.
    Li S, Zou J, Wu J, Lin J, Tang C, Yang S, Chen L, Li Q, Wang P, Ma J.
    Water Res; 2024 Aug 01; 259():121891. PubMed ID: 38870888
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. In-depth insights into Fe(III)-doped g-C3N4 activated peracetic acid: Intrinsic reactive species, catalytic mechanism and environmental application.
    Zhao H, Ren Y, Liu C, Li L, Li N, Lai B, Li J.
    J Hazard Mater; 2023 Oct 05; 459():132117. PubMed ID: 37531769
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Degradation of pharmaceutical mixtures in aqueous solutions using UV/peracetic acid process: Kinetics, degradation pathways and comparison with UV/H2O2.
    Hollman J, Dominic JA, Achari G.
    Chemosphere; 2020 Jun 05; 248():125911. PubMed ID: 32007769
    [Abstract] [Full Text] [Related]

  • 15. Activation of peracetic acid with zero-valent iron for tetracycline abatement: The role of Fe(II) complexation with tetracycline.
    Zhang P, Zhang X, Zhao X, Jing G, Zhou Z.
    J Hazard Mater; 2022 Feb 15; 424(Pt D):127653. PubMed ID: 34801301
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Accelerated removal of naproxen in the iron-based peracetic acid activation system by chloride ions: Enhancement of reactive oxidative species via the formation of iron-chloride complexes.
    Yu SY, Shi Y, He CS, Dong YD, Sun S, Ning RY, Xiong ZK, Zhou P, Zhang H, Lai B.
    J Hazard Mater; 2024 Jan 15; 462():132760. PubMed ID: 37839375
    [Abstract] [Full Text] [Related]

  • 18. Photo degradation of methyl orange an azo dye by advanced Fenton process using zero valent metallic iron: influence of various reaction parameters and its degradation mechanism.
    Gomathi Devi L, Girish Kumar S, Mohan Reddy K, Munikrishnappa C.
    J Hazard Mater; 2009 May 30; 164(2-3):459-67. PubMed ID: 18805635
    [Abstract] [Full Text] [Related]

  • 19. Photo-assisted natural chalcopyrite activated peracetic acid for efficient micropollutant degradation.
    An L, Kong X, Jiang M, Li W, Lv Q, Hou X, Liu C, Su P, Ma J, Yang T.
    Water Res; 2024 Jun 15; 257():121699. PubMed ID: 38713937
    [Abstract] [Full Text] [Related]

  • 20. Insights into the pH-dependent mechanism of peracetic acid activation by biochar-supported zero-valent iron/cobalt bimetallic nanoparticles: The shift of reactive sites and the dual role of hydrogen peroxide.
    Deng J, Dong H, Zhang S, Zhao Q, Cheng L, Zhang H, Xiao S, Huang D.
    J Hazard Mater; 2024 Sep 05; 476():135207. PubMed ID: 39013319
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.