These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


631 related items for PubMed ID: 37115848

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink.
    Garcia-Cruz MR, Postma A, Frith JE, Meagher L.
    Biofabrication; 2021 Apr 08; 13(3):. PubMed ID: 33662950
    [Abstract] [Full Text] [Related]

  • 5. Electrically stimulated 3D bioprinting of gelatin-polypyrrole hydrogel with dynamic semi-IPN network induces osteogenesis via collective signaling and immunopolarization.
    Dutta SD, Ganguly K, Randhawa A, Patil TV, Patel DK, Lim KT.
    Biomaterials; 2023 Mar 08; 294():121999. PubMed ID: 36669301
    [Abstract] [Full Text] [Related]

  • 6. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy.
    Yin J, Yan M, Wang Y, Fu J, Suo H.
    ACS Appl Mater Interfaces; 2018 Feb 28; 10(8):6849-6857. PubMed ID: 29405059
    [Abstract] [Full Text] [Related]

  • 7. Tunable metacrylated silk fibroin-based hybrid bioinks for the bioprinting of tissue engineering scaffolds.
    Yang J, Li Z, Li S, Zhang Q, Zhou X, He C.
    Biomater Sci; 2023 Feb 28; 11(5):1895-1909. PubMed ID: 36722864
    [Abstract] [Full Text] [Related]

  • 8. Designing Gelatin Methacryloyl (GelMA)-Based Bioinks for Visible Light Stereolithographic 3D Biofabrication.
    Kumar H, Sakthivel K, Mohamed MGA, Boras E, Shin SR, Kim K.
    Macromol Biosci; 2021 Jan 28; 21(1):e2000317. PubMed ID: 33043610
    [Abstract] [Full Text] [Related]

  • 9. Extrusion Bioprinting of Shear-Thinning Gelatin Methacryloyl Bioinks.
    Liu W, Heinrich MA, Zhou Y, Akpek A, Hu N, Liu X, Guan X, Zhong Z, Jin X, Khademhosseini A, Zhang YS.
    Adv Healthc Mater; 2017 Jun 28; 6(12):. PubMed ID: 28464555
    [Abstract] [Full Text] [Related]

  • 10. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink.
    Gu Y, Zhang L, Du X, Fan Z, Wang L, Sun W, Cheng Y, Zhu Y, Chen C.
    J Biomater Appl; 2018 Nov 28; 33(5):609-618. PubMed ID: 30360677
    [Abstract] [Full Text] [Related]

  • 11. Protocols of 3D Bioprinting of Gelatin Methacryloyl Hydrogel Based Bioinks.
    Xie M, Yu K, Sun Y, Shao L, Nie J, Gao Q, Qiu J, Fu J, Chen Z, He Y.
    J Vis Exp; 2019 Dec 21; (154):. PubMed ID: 31904016
    [Abstract] [Full Text] [Related]

  • 12. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage.
    Daly AC, Critchley SE, Rencsok EM, Kelly DJ.
    Biofabrication; 2016 Oct 07; 8(4):045002. PubMed ID: 27716628
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Recent Advances on Bioprinted Gelatin Methacrylate-Based Hydrogels for Tissue Repair.
    Rajabi N, Rezaei A, Kharaziha M, Bakhsheshi-Rad HR, Luo H, RamaKrishna S, Berto F.
    Tissue Eng Part A; 2021 Jun 07; 27(11-12):679-702. PubMed ID: 33499750
    [Abstract] [Full Text] [Related]

  • 15. Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties.
    Rutz AL, Gargus ES, Hyland KE, Lewis PL, Setty A, Burghardt WR, Shah RN.
    Acta Biomater; 2019 Nov 07; 99():121-132. PubMed ID: 31539655
    [Abstract] [Full Text] [Related]

  • 16. Assembling Microgels via Dynamic Cross-Linking Reaction Improves Printability, Microporosity, Tissue-Adhesion, and Self-Healing of Microgel Bioink for Extrusion Bioprinting.
    Feng Q, Li D, Li Q, Li H, Wang Z, Zhu S, Lin Z, Cao X, Dong H.
    ACS Appl Mater Interfaces; 2022 Apr 06; 14(13):15653-15666. PubMed ID: 35344348
    [Abstract] [Full Text] [Related]

  • 17. Microfluidic 3D Printing of a Photo-Cross-Linkable Bioink Using Insights from Computational Modeling.
    Mirani B, Stefanek E, Godau B, Hossein Dabiri SM, Akbari M.
    ACS Biomater Sci Eng; 2021 Jul 12; 7(7):3269-3280. PubMed ID: 34142796
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Effect of viscosity of gelatin methacryloyl-based bioinks on bone cells.
    Rashad A, Gomez A, Gangrade A, Zehtabi F, Mandal K, Maity S, Ma C, Li B, Khademhosseini A, de Barros NR.
    Biofabrication; 2024 Sep 03; 16(4):. PubMed ID: 39121892
    [Abstract] [Full Text] [Related]

  • 20. Visible Light Photoinitiation of Cell-Adhesive Gelatin Methacryloyl Hydrogels for Stereolithography 3D Bioprinting.
    Wang Z, Kumar H, Tian Z, Jin X, Holzman JF, Menard F, Kim K.
    ACS Appl Mater Interfaces; 2018 Aug 15; 10(32):26859-26869. PubMed ID: 30024722
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 32.