These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
201 related items for PubMed ID: 37116508
1. A deep learning method for continuous noninvasive blood pressure monitoring using photoplethysmography. Liang H, He W, Xu Z. Physiol Meas; 2023 May 22; 44(5):. PubMed ID: 37116508 [Abstract] [Full Text] [Related]
2. DeepCNAP: A Deep Learning Approach for Continuous Noninvasive Arterial Blood Pressure Monitoring Using Photoplethysmography. Kim DK, Kim YT, Kim H, Kim DJ. IEEE J Biomed Health Inform; 2022 Aug 22; 26(8):3697-3707. PubMed ID: 35511844 [Abstract] [Full Text] [Related]
3. A Continuous Blood Pressure Estimation Method Using Photoplethysmography by GRNN-Based Model. Li Z, He W. Sensors (Basel); 2021 Oct 29; 21(21):. PubMed ID: 34770514 [Abstract] [Full Text] [Related]
4. Blood pressure estimation and classification using a reference signal-less photoplethysmography signal: a deep learning framework. Pankaj, Kumar A, Komaragiri R, Kumar M. Phys Eng Sci Med; 2023 Dec 29; 46(4):1589-1605. PubMed ID: 37747644 [Abstract] [Full Text] [Related]
5. An Estimation Method of Continuous Non-Invasive Arterial Blood Pressure Waveform Using Photoplethysmography: A U-Net Architecture-Based Approach. Athaya T, Choi S. Sensors (Basel); 2021 Mar 07; 21(5):. PubMed ID: 33800106 [Abstract] [Full Text] [Related]
6. A Continuous Non-Invasive Blood Pressure Prediction Method Based on Deep Sparse Residual U-Net Combined with Improved Squeeze and Excitation Skip Connections. Lai K, Wang X, Cao C. Sensors (Basel); 2024 Apr 24; 24(9):. PubMed ID: 38732827 [Abstract] [Full Text] [Related]
7. KD-Informer: A Cuff-Less Continuous Blood Pressure Waveform Estimation Approach Based on Single Photoplethysmography. Ma C, Zhang P, Song F, Sun Y, Fan G, Zhang T, Feng Y, Zhang G. IEEE J Biomed Health Inform; 2023 May 24; 27(5):2219-2230. PubMed ID: 35700247 [Abstract] [Full Text] [Related]
8. BP-diff: a conditional diffusion model for cuffless continuous BP waveform estimation using U-Net. Liu Y, Yu J, Mou H. Physiol Meas; 2024 Oct 14; 45(10):. PubMed ID: 39321963 [Abstract] [Full Text] [Related]
9. A Refined Blood Pressure Estimation Model Based on Single Channel Photoplethysmography. Zhang Y, Ren X, Liang X, Ye X, Zhou C. IEEE J Biomed Health Inform; 2022 Dec 14; 26(12):5907-5917. PubMed ID: 36103444 [Abstract] [Full Text] [Related]
11. Cuff-Less Blood Pressure Estimation From Photoplethysmography via Visibility Graph and Transfer Learning. Wang W, Mohseni P, Kilgore KL, Najafizadeh L. IEEE J Biomed Health Inform; 2022 May 23; 26(5):2075-2085. PubMed ID: 34784289 [Abstract] [Full Text] [Related]
16. Non-invasive blood pressure estimation combining deep neural networks with pre-training and partial fine-tuning. Meng Z, Yang X, Liu X, Wang D, Han X. Physiol Meas; 2022 Nov 11; 43(11):. PubMed ID: 36301705 [Abstract] [Full Text] [Related]
17. Characters available in photoplethysmogram for blood pressure estimation: beyond the pulse transit time. Li Y, Wang Z, Zhang L, Yang X, Song J. Australas Phys Eng Sci Med; 2014 Jun 11; 37(2):367-76. PubMed ID: 24722801 [Abstract] [Full Text] [Related]
18. Generalized Deep Neural Network Model for Cuffless Blood Pressure Estimation with Photoplethysmogram Signal Only. Hsu YC, Li YH, Chang CC, Harfiya LN. Sensors (Basel); 2020 Oct 04; 20(19):. PubMed ID: 33020401 [Abstract] [Full Text] [Related]