These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


172 related items for PubMed ID: 37128894

  • 1. Design, synthesis and antifreeze properties of biomimetic peptoid oligomers.
    Zhang M, Qiu Z, Yang K, Zhou W, Liu W, Lu J, Guo L.
    Chem Commun (Camb); 2023 Jun 06; 59(46):7028-7031. PubMed ID: 37128894
    [Abstract] [Full Text] [Related]

  • 2. Biomimetic peptoid oligomers as dual-action antifreeze agents.
    Huang ML, Ehre D, Jiang Q, Hu C, Kirshenbaum K, Ward MD.
    Proc Natl Acad Sci U S A; 2012 Dec 04; 109(49):19922-7. PubMed ID: 23169638
    [Abstract] [Full Text] [Related]

  • 3. Preparation of Peptoid Antifreeze Agents and Their Structure-Property Relationship.
    Yang K, Liu D, Feng L, Xu L, Jiang Y, Shen X, Ali A, Lu J, Guo L.
    Polymers (Basel); 2024 Apr 04; 16(7):. PubMed ID: 38611248
    [Abstract] [Full Text] [Related]

  • 4. Antifreeze proteins and their biomimetics for cell cryopreservation: Mechanism, function and application-A review.
    Wu X, Yao F, Zhang H, Li J.
    Int J Biol Macromol; 2021 Dec 01; 192():1276-1291. PubMed ID: 34634336
    [Abstract] [Full Text] [Related]

  • 5. Peptidic Antifreeze Materials: Prospects and Challenges.
    Surís-Valls R, Voets IK.
    Int J Mol Sci; 2019 Oct 17; 20(20):. PubMed ID: 31627404
    [Abstract] [Full Text] [Related]

  • 6. Bioinspired l-Proline Oligomers for the Cryopreservation of Oocytes via Controlling Ice Growth.
    Qin Q, Zhao L, Liu Z, Liu T, Qu J, Zhang X, Li R, Yan L, Yan J, Jin S, Wang J, Qiao J.
    ACS Appl Mater Interfaces; 2020 Apr 22; 12(16):18352-18362. PubMed ID: 32227894
    [Abstract] [Full Text] [Related]

  • 7. Rational, yet simple, design and synthesis of an antifreeze-protein inspired polymer for cellular cryopreservation.
    Mitchell DE, Cameron NR, Gibson MI.
    Chem Commun (Camb); 2015 Aug 21; 51(65):12977-80. PubMed ID: 26176027
    [Abstract] [Full Text] [Related]

  • 8. Blocking rapid ice crystal growth through nonbasal plane adsorption of antifreeze proteins.
    Olijve LL, Meister K, DeVries AL, Duman JG, Guo S, Bakker HJ, Voets IK.
    Proc Natl Acad Sci U S A; 2016 Apr 05; 113(14):3740-5. PubMed ID: 26936953
    [Abstract] [Full Text] [Related]

  • 9. C-linked antifreeze glycoprotein (C-AFGP) analogues as novel cryoprotectants.
    Leclère M, Kwok BK, Wu LK, Allan DS, Ben RN.
    Bioconjug Chem; 2011 Sep 21; 22(9):1804-10. PubMed ID: 21815632
    [Abstract] [Full Text] [Related]

  • 10. Modulation of antifreeze activity and the effect upon post-thaw HepG2 cell viability after cryopreservation.
    Capicciotti CJ, Poisson JS, Boddy CN, Ben RN.
    Cryobiology; 2015 Apr 21; 70(2):79-89. PubMed ID: 25595636
    [Abstract] [Full Text] [Related]

  • 11. Influence of Block Copolymerization on the Antifreeze Protein Mimetic Ice Recrystallization Inhibition Activity of Poly(vinyl alcohol).
    Congdon TR, Notman R, Gibson MI.
    Biomacromolecules; 2016 Sep 12; 17(9):3033-9. PubMed ID: 27476873
    [Abstract] [Full Text] [Related]

  • 12. Applications of Antifreeze Proteins: Practical Use of the Quality Products from Japanese Fishes.
    Mahatabuddin S, Tsuda S.
    Adv Exp Med Biol; 2018 Sep 12; 1081():321-337. PubMed ID: 30288717
    [Abstract] [Full Text] [Related]

  • 13. The Impact of Salts on the Ice Recrystallization Inhibition Activity of Antifreeze (Glyco)Proteins.
    Surís-Valls R, Voets IK.
    Biomolecules; 2019 Aug 06; 9(8):. PubMed ID: 31390745
    [Abstract] [Full Text] [Related]

  • 14. Ice Recrystallization Inhibition Is Insufficient to Explain Cryopreservation Abilities of Antifreeze Proteins.
    Sun Y, Maltseva D, Liu J, Hooker T, Mailänder V, Ramløv H, DeVries AL, Bonn M, Meister K.
    Biomacromolecules; 2022 Mar 14; 23(3):1214-1220. PubMed ID: 35080878
    [Abstract] [Full Text] [Related]

  • 15. The mechanisms and applications of cryoprotectants in aquatic products: An overview.
    Liu Z, Yang W, Wei H, Deng S, Yu X, Huang T.
    Food Chem; 2023 May 15; 408():135202. PubMed ID: 36525728
    [Abstract] [Full Text] [Related]

  • 16. Inhibition of ice recrystallization and cryoprotective activity of wheat proteins in liver and pancreatic cells.
    Chow-Shi-Yée M, Briard JG, Grondin M, Averill-Bates DA, Ben RN, Ouellet F.
    Protein Sci; 2016 May 15; 25(5):974-86. PubMed ID: 26889747
    [Abstract] [Full Text] [Related]

  • 17. Comparative Study on the Cryoprotective Effects of Three Recombinant Antifreeze Proteins from Pichia pastoris GS115 on Hydrated Gluten Proteins during Freezing.
    Liu M, Liang Y, Zhang H, Wu G, Wang L, Qian H, Qi X.
    J Agric Food Chem; 2018 Jun 20; 66(24):6151-6161. PubMed ID: 29863868
    [Abstract] [Full Text] [Related]

  • 18. Regioregular Alternating Polyampholytes Have Enhanced Biomimetic Ice Recrystallization Activity Compared to Random Copolymers and the Role of Side Chain versus Main Chain Hydrophobicity.
    Stubbs C, Lipecki J, Gibson MI.
    Biomacromolecules; 2017 Jan 09; 18(1):295-302. PubMed ID: 27936601
    [Abstract] [Full Text] [Related]

  • 19. Antifreeze Protein Mimetic Metallohelices with Potent Ice Recrystallization Inhibition Activity.
    Mitchell DE, Clarkson G, Fox DJ, Vipond RA, Scott P, Gibson MI.
    J Am Chem Soc; 2017 Jul 26; 139(29):9835-9838. PubMed ID: 28715207
    [Abstract] [Full Text] [Related]

  • 20. Performance of antifreeze protein HrCHI4 from Hippophae rhamnoides in improving the structure and freshness of green beans upon cryopreservation.
    Kashyap P, Kumar S, Singh D.
    Food Chem; 2020 Aug 01; 320():126599. PubMed ID: 32222656
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.