These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
239 related items for PubMed ID: 37146292
21. Superior Pseudocapacitive Lithium-Ion Storage in Porous Vanadium Oxides@C Heterostructure Composite. Wang HE, Zhao X, Yin K, Li Y, Chen L, Yang X, Zhang W, Su BL, Cao G. ACS Appl Mater Interfaces; 2017 Dec 20; 9(50):43665-43673. PubMed ID: 29192754 [Abstract] [Full Text] [Related]
22. Electronic synergy to boost the performance of NiCoP-NWs@FeCoP-NSs anodes for flexible lithium-ion batteries. Wu Q, Wang L, Mao X, Yang Y, Yan L, Zeng S, Zhao K, Huang QA, Liu M, Liu X, Zhang J, Sun X. Nanoscale; 2022 Jun 16; 14(23):8398-8408. PubMed ID: 35638373 [Abstract] [Full Text] [Related]
23. Insights into the enhanced electrochemical performance of MnV2O6 nanoflakes as an anode material for advanced lithium storage. Wen N, Chen S, Lu Q, Li Y, Fan Q, Kuang Q, Dong Y, Zhao Y. Nanoscale; 2022 Jul 28; 14(29):10428-10438. PubMed ID: 35815897 [Abstract] [Full Text] [Related]
24. Hierarchical CoO/MnCo2O4.5 nanorod arrays on flexible carbon cloth as high-performance anode materials for lithium-ion batteries. Ni L, Tang W, Liu X, Zhang N, Wang J, Liang S, Ma R, Qiu G. Dalton Trans; 2018 Mar 12; 47(11):3775-3784. PubMed ID: 29445789 [Abstract] [Full Text] [Related]
25. Carbon-coated Ni0.5Mg0.5Fe1.7Mn0.3O4 nanoparticles as a novel anode material for high energy density lithium-ion batteries. Kouchi K, Tayoury M, Chari A, Hdidou L, Chchiyai Z, El Kamouny K, Tamraoui Y, Manoun B, Alami J, Dahbi M. Phys Chem Chem Phys; 2024 Feb 28; 26(9):7492-7503. PubMed ID: 38356390 [Abstract] [Full Text] [Related]
26. A novel self-assembled-derived 1D MnO2@Co3O4 composite as a high-performance Li-ion storage anode material. Li Z, Lian X, Wu M, Zheng F, Gao Y, Niu H. Dalton Trans; 2020 May 28; 49(20):6644-6650. PubMed ID: 32367093 [Abstract] [Full Text] [Related]
27. Vanadium Nitride Nanoparticles Grown on Carbon Fiber Cloth as an Advanced Binder-Free Anode for the Storage of Sodium and Potassium Ions. Qin Y, Zhang H, Yanghe J, Yang J, Li W, Zhao X, Liu S. Materials (Basel); 2023 Aug 25; 16(17):. PubMed ID: 37687513 [Abstract] [Full Text] [Related]
28. Selective Phosphorization Boosting High-Performance NiO/Ni2Co4P3 Microspheres as Anode Materials for Lithium Ion Batteries. Yan J, Chang XB, Ma XK, Wang H, Zhang Y, Gao KZ, Yoshikawa H, Wang LZ. Materials (Basel); 2020 Dec 23; 14(1):. PubMed ID: 33374649 [Abstract] [Full Text] [Related]
29. Nanoscale Engineering of Heterostructured Anode Materials for Boosting Lithium-Ion Storage. Chen G, Yan L, Luo H, Guo S. Adv Mater; 2016 Sep 23; 28(35):7580-602. PubMed ID: 27302769 [Abstract] [Full Text] [Related]
30. Hierarchical Porous NiO/β-NiMoO4 Heterostructure as Superior Anode Material for Lithium Storage. Wang Z, Zhang S, Zeng H, Zhao H, Sun W, Jiang M, Feng C, Liu J, Zhou T, Zheng Y, Guo Z. Chempluschem; 2018 Oct 23; 83(10):915-923. PubMed ID: 31950616 [Abstract] [Full Text] [Related]
31. Regulating the Electronic Configuration of Spinel Zinc Manganate Derived from Metal-Organic Frameworks: Controlled Synthesis and Application in Anode Materials for Lithium-Ion Batteries. Du W, Liu J, Zeb A, Lin X. ACS Appl Mater Interfaces; 2022 Aug 24; 14(33):37652-37666. PubMed ID: 35960813 [Abstract] [Full Text] [Related]
32. Designed hybrid nanostructure with catalytic effect: beyond the theoretical capacity of SnO2 anode material for lithium ion batteries. Wang Y, Huang ZX, Shi Y, Wong JI, Ding M, Yang HY. Sci Rep; 2015 Mar 17; 5():9164. PubMed ID: 25776280 [Abstract] [Full Text] [Related]
33. Synthesis and Characterization of Zinc/Iron Composite Oxide Heterojunction Porous Anode Materials for High-Performance Lithium-Ion Batteries. Wang R, Wang Y, Xiong W, Liu J, Li H. Molecules; 2023 Nov 19; 28(22):. PubMed ID: 38005387 [Abstract] [Full Text] [Related]
34. Nitrogen-doped porous carbon/Co3O4 nanocomposites as anode materials for lithium-ion batteries. Wang L, Zheng Y, Wang X, Chen S, Xu F, Zuo L, Wu J, Sun L, Li Z, Hou H, Song Y. ACS Appl Mater Interfaces; 2014 May 28; 6(10):7117-25. PubMed ID: 24802130 [Abstract] [Full Text] [Related]
35. Co3O4/carbon aerogel hybrids as anode materials for lithium-ion batteries with enhanced electrochemical properties. Hao F, Zhang Z, Yin L. ACS Appl Mater Interfaces; 2013 Sep 11; 5(17):8337-44. PubMed ID: 23924311 [Abstract] [Full Text] [Related]
36. MOF-Templated Synthesis of Co3O4@TiO2 Hollow Dodecahedrons for High-Storage-Density Lithium-Ion Batteries. Ding H, Zhang XK, Fan JQ, Zhan XQ, Xie L, Shi D, Jiang T, Tsai FC. ACS Omega; 2019 Aug 20; 4(8):13241-13249. PubMed ID: 31460451 [Abstract] [Full Text] [Related]
37. Construction of N-doped carbon encapsulated CoP hollow nanofibers as multifunctional electrode materials for potassium-ion and lithium-sulfur batteries. Ma Y, Li L, Zhu Y, Zhu Y, Lian R, Zhang W. J Colloid Interface Sci; 2024 Nov 20; 673():504-516. PubMed ID: 38879992 [Abstract] [Full Text] [Related]
38. Three-dimensional porous Co3O4-CoO@GO composite combined with N-doped carbon for superior lithium storage. Xu Y, Wu C, Ao L, Jiang K, Shang L, Li Y, Hu Z, Chu J. Nanotechnology; 2019 Oct 18; 30(42):425404. PubMed ID: 31386632 [Abstract] [Full Text] [Related]
39. Synthesis of One-Dimensional Mesoporous Ag Nanoparticles-Modified TiO2 Nanofibers by Electrospinning for Lithium Ion Batteries. Zhang Y, Li J, Li W, Kang D. Materials (Basel); 2019 Aug 18; 12(16):. PubMed ID: 31426615 [Abstract] [Full Text] [Related]
40. Electrospun hetero-CoP/FeP embedded in porous carbon nanofibers: enhanced Na+ kinetics and specific capacity. Han L, Zhang M, Wang H, Li P, Wei W, Shi J, Huang M, Shi Z, Liu W, Chen S. Nanoscale; 2020 Dec 23; 12(48):24477-24487. PubMed ID: 33313626 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]