These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


117 related items for PubMed ID: 3714824

  • 21. Characteristics of DNA excision repair in nondividing xeroderma pigmentosum cells, complementation group C.
    Kantor GJ.
    Basic Life Sci; 1990; 53():203-14. PubMed ID: 2282035
    [No Abstract] [Full Text] [Related]

  • 22. Transfection of cells from a xeroderma pigmentosum patient with normal human DNA confers UV resistance.
    Takano T, Noda M, Tamura T.
    Nature; 1982 Mar 18; 296(5854):269-70. PubMed ID: 7063029
    [No Abstract] [Full Text] [Related]

  • 23. Abnormal ultraviolet mutagenic spectrum in plasmid DNA replicated in cultured fibroblasts from a patient with the skin cancer-prone disease, xeroderma pigmentosum.
    Seetharam S, Protić-Sabljić M, Seidman MM, Kraemer KH.
    J Clin Invest; 1987 Dec 18; 80(6):1613-7. PubMed ID: 3680516
    [Abstract] [Full Text] [Related]

  • 24. Establishment by SV40 transformation and characteristics of a cell line of xeroderma pigmentosum belonging to complementation group F.
    Yagi T, Takebe H.
    Mutat Res; 1983 Feb 18; 112(1):59-66. PubMed ID: 6298614
    [No Abstract] [Full Text] [Related]

  • 25. Rapid complementation method for classifying excision repair-defective xeroderma pigmentosum cell strains.
    Cleaver JE.
    Somatic Cell Genet; 1982 Nov 18; 8(6):801-10. PubMed ID: 7163956
    [Abstract] [Full Text] [Related]

  • 26. Sister chromatid exchange-related characteristics of excision repair-proficient xeroderma pigmentosum cells.
    Oikawa A, Tohda H.
    J Invest Dermatol; 1989 May 18; 92(5 Suppl):289S-292S. PubMed ID: 2715662
    [Abstract] [Full Text] [Related]

  • 27. Single-strand breaks in DNA during repair of UV-induced damage in normal human and xeroderma pigmentosum cells as determined by alkaline DNA unwinding and hydroxylapatite chromatography: effects of hydroxyurea, 5-fluorodeoxyuridine and 1-beta-D-arabinofuranosylcytosine on the kinetics of repair.
    Erixon K, Ahnström G.
    Mutat Res; 1979 Feb 18; 59(2):257-71. PubMed ID: 35744
    [Abstract] [Full Text] [Related]

  • 28. Sedimentation of DNA from human fibroblasts irradiated with ultraviolet light: possible detection of excision breaks in normal and repair-deficient xeroderma pigmentosum cells.
    Cleaver JE.
    Radiat Res; 1974 Feb 18; 57(2):207-27. PubMed ID: 10874937
    [No Abstract] [Full Text] [Related]

  • 29. DNA repair and human disease. The case of xeroderma pigmentosum.
    Kacinski BM.
    Conn Med; 1978 Feb 18; 42(2):99-104. PubMed ID: 630869
    [No Abstract] [Full Text] [Related]

  • 30. Repair of DNA damage after exposure to 4-nitroquinoline-1-oxide in heterokaryons derived from xeroderma pigmentosum cells.
    Zelle B, Bootsma D.
    Mutat Res; 1980 May 18; 70(3):373-81. PubMed ID: 6770261
    [Abstract] [Full Text] [Related]

  • 31. Phenotypic correction of the defect in xeroderma pigmentosum cells after fusion with isolated cytoplasts.
    Keijzer W, Verkerk A, Bootsma D.
    Exp Cell Res; 1982 Jul 18; 140(1):119-25. PubMed ID: 7106197
    [No Abstract] [Full Text] [Related]

  • 32. Clinical symptoms and DNA repair characteristics of xeroderma pigmentosum patients from Germany.
    Thielmann HW, Popanda O, Edler L, Jung EG.
    Cancer Res; 1991 Jul 01; 51(13):3456-70. PubMed ID: 2054785
    [Abstract] [Full Text] [Related]

  • 33. Defective repair of ionizing radiation damage in Cockayne's syndrome and xeroderma pigmentosum group G.
    Cooper PK, Leadon SA.
    Ann N Y Acad Sci; 1994 Jul 29; 726():330-2. PubMed ID: 8092696
    [No Abstract] [Full Text] [Related]

  • 34. Studies on repair of adenovirus 2 by human fibroblasts using normal, xeroderma pigmentosum, and xeroderma pigmentosum heterozygous strains.
    Day RS.
    Cancer Res; 1974 Aug 29; 34(8):1965-70. PubMed ID: 4842250
    [No Abstract] [Full Text] [Related]

  • 35. Excision repair in man and the molecular basis of xeroderma pigmentosum syndrome.
    Reardon JT, Thompson LH, Sancar A.
    Cold Spring Harb Symp Quant Biol; 1993 Aug 29; 58():605-17. PubMed ID: 7956075
    [No Abstract] [Full Text] [Related]

  • 36. Induction of sister chromatid exchanges in xeroderma pigmentosum cells after exposure to ultraviolet light.
    De Weerd-Kastelein EA, Keijzer W, Rainaldi G, Bootsma D.
    Mutat Res; 1977 Nov 29; 45(2):253-61. PubMed ID: 593287
    [Abstract] [Full Text] [Related]

  • 37. Effect of XPA gene mutations on UV-induced immunostaining of PCNA in fibroblasts from xeroderma pigmentosum group A patients.
    Miura M, Sasaki T.
    Mutat Res; 1996 Sep 02; 364(1):51-6. PubMed ID: 8814338
    [Abstract] [Full Text] [Related]

  • 38. A ninth complementation group in xeroderma pigmentosum, XP I.
    Fischer E, Keijzer W, Thielmann HW, Popanda O, Bohnert E, Edler L, Jung EG, Bootsma D.
    Mutat Res; 1985 May 02; 145(3):217-25. PubMed ID: 3982437
    [Abstract] [Full Text] [Related]

  • 39. Survival of UV-irradiated vaccinia virus in normal and xeroderma pigmentosum fibroblasts; evidence for repair of UV-damaged viral DNA.
    Klein B, Filon AR, van Zeeland AA, van der Eb AJ.
    Mutat Res; 1994 May 01; 307(1):25-32. PubMed ID: 7513804
    [Abstract] [Full Text] [Related]

  • 40. DNA damage and repair in normal, xeroderma pigmentosum and XP revertant cells analyzed by gel electrophoresis: excision of cyclobutane dimers from the whole genome is not necessary for cell survival.
    Cleaver JE.
    Carcinogenesis; 1989 Sep 01; 10(9):1691-6. PubMed ID: 2766460
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.