These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
323 related items for PubMed ID: 37149727
1. The REV-ERB Nuclear Receptors: Timekeepers for the Core Clock Period and Metabolism. Adlanmerini M, Lazar MA. Endocrinology; 2023 Apr 17; 164(6):. PubMed ID: 37149727 [Abstract] [Full Text] [Related]
2. REV-ERBα and REV-ERBβ function as key factors regulating Mammalian Circadian Output. Ikeda R, Tsuchiya Y, Koike N, Umemura Y, Inokawa H, Ono R, Inoue M, Sasawaki Y, Grieten T, Okubo N, Ikoma K, Fujiwara H, Kubo T, Yagita K. Sci Rep; 2019 Jul 15; 9(1):10171. PubMed ID: 31308426 [Abstract] [Full Text] [Related]
3. Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function. Bugge A, Feng D, Everett LJ, Briggs ER, Mullican SE, Wang F, Jager J, Lazar MA. Genes Dev; 2012 Apr 01; 26(7):657-67. PubMed ID: 22474260 [Abstract] [Full Text] [Related]
4. Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Cho H, Zhao X, Hatori M, Yu RT, Barish GD, Lam MT, Chong LW, DiTacchio L, Atkins AR, Glass CK, Liddle C, Auwerx J, Downes M, Panda S, Evans RM. Nature; 2012 Mar 29; 485(7396):123-7. PubMed ID: 22460952 [Abstract] [Full Text] [Related]
5. Redundant function of REV-ERBalpha and beta and non-essential role for Bmal1 cycling in transcriptional regulation of intracellular circadian rhythms. Liu AC, Tran HG, Zhang EE, Priest AA, Welsh DK, Kay SA. PLoS Genet; 2008 Feb 29; 4(2):e1000023. PubMed ID: 18454201 [Abstract] [Full Text] [Related]
6. The nuclear receptor REV-ERBα integrates circadian clock and energy metabolism. Mao SY, Zhao CR, Liu C. Yi Chuan; 2023 Feb 20; 45(2):99-114. PubMed ID: 36927658 [Abstract] [Full Text] [Related]
7. REV-ERBα alters circadian rhythms by modulating mTOR signaling. Dadon-Freiberg M, Chapnik N, Froy O. Mol Cell Endocrinol; 2021 Feb 05; 521():111108. PubMed ID: 33285244 [Abstract] [Full Text] [Related]
17. The hepatocyte clock and feeding control chronophysiology of multiple liver cell types. Guan D, Xiong Y, Trinh TM, Xiao Y, Hu W, Jiang C, Dierickx P, Jang C, Rabinowitz JD, Lazar MA. Science; 2020 Sep 11; 369(6509):1388-1394. PubMed ID: 32732282 [Abstract] [Full Text] [Related]
18. Circadian REV-ERBs repress E4bp4 to activate NAMPT-dependent NAD+ biosynthesis and sustain cardiac function. Dierickx P, Zhu K, Carpenter BJ, Jiang C, Vermunt MW, Xiao Y, Luongo TS, Yamamoto T, Martí-Pàmies Í, Mia S, Latimer M, Diwan A, Zhao J, Hauck AK, Krusen B, Nguyen HCB, Blobel GA, Kelly DP, Pei L, Baur JA, Young ME, Lazar MA. Nat Cardiovasc Res; 2022 Jan 11; 1(1):45-58. PubMed ID: 35036997 [Abstract] [Full Text] [Related]
19. Identification of a novel circadian clock modulator controlling BMAL1 expression through a ROR/REV-ERB-response element-dependent mechanism. Lee J, Lee S, Chung S, Park N, Son GH, An H, Jang J, Chang DJ, Suh YG, Kim K. Biochem Biophys Res Commun; 2016 Jan 15; 469(3):580-6. PubMed ID: 26692477 [Abstract] [Full Text] [Related]
20. Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Solt LA, Wang Y, Banerjee S, Hughes T, Kojetin DJ, Lundasen T, Shin Y, Liu J, Cameron MD, Noel R, Yoo SH, Takahashi JS, Butler AA, Kamenecka TM, Burris TP. Nature; 2012 Mar 29; 485(7396):62-8. PubMed ID: 22460951 [Abstract] [Full Text] [Related] Page: [Next] [New Search]