These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


138 related items for PubMed ID: 37169163

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Muscle pain differentially modulates short interval intracortical inhibition and intracortical facilitation in primary motor cortex.
    Schabrun SM, Hodges PW.
    J Pain; 2012 Feb; 13(2):187-94. PubMed ID: 22227117
    [Abstract] [Full Text] [Related]

  • 5. Increasing mediolateral standing sway is associated with increasing corticospinal excitability, and decreasing M1 inhibition and facilitation.
    Nandi T, Fisher BE, Hortobágyi T, Salem GJ.
    Gait Posture; 2018 Feb; 60():135-140. PubMed ID: 29202358
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Alterations in the cortical control of standing posture during varying levels of postural threat and task difficulty.
    Tokuno CD, Keller M, Carpenter MG, Márquez G, Taube W.
    J Neurophysiol; 2018 Sep 01; 120(3):1010-1016. PubMed ID: 29790833
    [Abstract] [Full Text] [Related]

  • 8. Modulation of the cortical silent period elicited by single- and paired-pulse transcranial magnetic stimulation.
    Kojima S, Onishi H, Sugawara K, Kirimoto H, Suzuki M, Tamaki H.
    BMC Neurosci; 2013 Apr 02; 14():43. PubMed ID: 23547559
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Attentional focus differentially modulates the corticospinal and intracortical excitability during dynamic and static exercise.
    Matsumoto A, Ogawa A, Oshima C, Aruga R, Ikeda M, Sasaya R, Toriyama M, Irie K, Liang N.
    J Appl Physiol (1985); 2024 Apr 01; 136(4):807-820. PubMed ID: 38357730
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Changes in thresholds for intracortical excitability in chronic stroke: more than just altered intracortical inhibition.
    Edwards JD, Meehan SK, Linsdell MA, Borich MR, Anbarani K, Jones PW, Ferris J, Boyd LA.
    Restor Neurol Neurosci; 2013 Apr 01; 31(6):693-705. PubMed ID: 23963339
    [Abstract] [Full Text] [Related]

  • 14. An optimal protocol for measurement of corticospinal excitability, short intracortical inhibition and intracortical facilitation in the rectus femoris.
    Brownstein CG, Ansdell P, Škarabot J, Howatson G, Goodall S, Thomas K.
    J Neurol Sci; 2018 Nov 15; 394():45-56. PubMed ID: 30216757
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Modulation of short-latency afferent inhibition and short-interval intracortical inhibition by test stimulus intensity and motor-evoked potential amplitude.
    Miyaguchi S, Kojima S, Sasaki R, Tamaki H, Onishi H.
    Neuroreport; 2017 Dec 13; 28(18):1202-1207. PubMed ID: 29064955
    [Abstract] [Full Text] [Related]

  • 18. Reduced intracortical inhibition and facilitation of corticospinal neurons in musicians.
    Nordstrom MA, Butler SL.
    Exp Brain Res; 2002 Jun 13; 144(3):336-42. PubMed ID: 12021815
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.