These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


201 related items for PubMed ID: 37174701

  • 1. Functional Analyses of the Bacillus velezensis HMB26553 Genome Provide Evidence That Its Genes Are Potentially Related to the Promotion of Plant Growth and Prevention of Cotton Rhizoctonia Damping-Off.
    Su Z, Liu G, Liu X, Li S, Lu X, Wang P, Zhao W, Zhang X, Dong L, Qu Y, Zhang J, Mo S, Guo Q, Ma P.
    Cells; 2023 May 02; 12(9):. PubMed ID: 37174701
    [Abstract] [Full Text] [Related]

  • 2. Establishment and application of quantitative detection of Bacillus velezensis HMB26553, a biocontrol agent against cotton damping-off caused by Rhizoctonia.
    Su Z, Liu G, Li C, Liu X, Guo Q, Wang P, Dong L, Lu X, Zhao W, Zhang X, Qu Y, Zhang J, Mo S, Li S, Ma P.
    Biotechnol J; 2024 Jan 02; 19(2):e2300412. PubMed ID: 38375560
    [Abstract] [Full Text] [Related]

  • 3. Comparative Genome Analysis Reveals Phylogenetic Identity of Bacillus velezensis HNA3 and Genomic Insights into Its Plant Growth Promotion and Biocontrol Effects.
    Zaid DS, Cai S, Hu C, Li Z, Li Y.
    Microbiol Spectr; 2022 Feb 23; 10(1):e0216921. PubMed ID: 35107331
    [Abstract] [Full Text] [Related]

  • 4. Genomic and metabolomic insights into the antimicrobial compounds and plant growth-promoting potential of Bacillus velezensis Q-426.
    Wang L, Fan R, Ma H, Sun Y, Huang Y, Wang Y, Guo Q, Ren X, Xu L, Zhao J, Zhang L, Xu Y, Jin L, Dong Y, Quan C.
    BMC Genomics; 2023 Oct 04; 24(1):589. PubMed ID: 37794314
    [Abstract] [Full Text] [Related]

  • 5. Genome mining and UHPLC-QTOF-MS/MS to identify the potential antimicrobial compounds and determine the specificity of biosynthetic gene clusters in Bacillus subtilis NCD-2.
    Su Z, Chen X, Liu X, Guo Q, Li S, Lu X, Zhang X, Wang P, Dong L, Zhao W, Ma P.
    BMC Genomics; 2020 Nov 05; 21(1):767. PubMed ID: 33153447
    [Abstract] [Full Text] [Related]

  • 6. Comprehensive genomic analysis of Bacillus velezensis AL7 reveals its biocontrol potential against Verticillium wilt of cotton.
    Liu H, Zeng Q, Yalimaimaiti N, Wang W, Zhang R, Yao J.
    Mol Genet Genomics; 2021 Nov 05; 296(6):1287-1298. PubMed ID: 34553246
    [Abstract] [Full Text] [Related]

  • 7. Complete genome sequence of Bacillus velezensis strain Ag109, a biocontrol agent against plant-parasitic nematodes and Sclerotinia sclerotiorum.
    Mian S, Machado ACZ, Hoshino RT, Mosela M, Higashi AY, Shimizu GD, Teixeira GM, Nogueira AF, Giacomin RM, Ribeiro LAB, Koltun A, de Assis R, Gonçalves LSA.
    BMC Microbiol; 2024 Jun 07; 24(1):194. PubMed ID: 38849775
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Identification and genomic insights into a strain of Bacillus velezensis with phytopathogen-inhibiting and plant growth-promoting properties.
    Liang X, Ishfaq S, Liu Y, Jijakli MH, Zhou X, Yang X, Guo W.
    Microbiol Res; 2024 Aug 07; 285():127745. PubMed ID: 38733724
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. A novel biocontrol agent Bacillus velezensis K01 for management of gray mold caused by Botrytis cinerea.
    Xue Y, Zhang Y, Huang K, Wang X, Xing M, Xu Q, Guo Y.
    AMB Express; 2023 Aug 29; 13(1):91. PubMed ID: 37642883
    [Abstract] [Full Text] [Related]

  • 15. Complete genome sequence of Bacillus velezensis YYC, a bacterium isolated from the tomato rhizosphere.
    Yan Y, Xu W, Chen W, Hu Y, Wang Z.
    Arch Microbiol; 2021 Dec 21; 204(1):44. PubMed ID: 34932137
    [Abstract] [Full Text] [Related]

  • 16. Genome sequencing and analysis of Bacillus velezensis VJH504 reveal biocontrol mechanism against cucumber Fusarium wilt.
    Yang F, Jiang H, Ma K, Wang X, Liang S, Cai Y, Jing Y, Tian B, Shi X.
    Front Microbiol; 2023 Dec 21; 14():1279695. PubMed ID: 37901818
    [Abstract] [Full Text] [Related]

  • 17. Genomic Insights Into the Antifungal Activity and Plant Growth-Promoting Ability in Bacillus velezensis CMRP 4490.
    Teixeira GM, Mosela M, Nicoletto MLA, Ribeiro RA, Hungria M, Youssef K, Higashi AY, Mian S, Ferreira AS, Gonçalves LSA, Pereira UP, de Oliveira AG.
    Front Microbiol; 2020 Dec 21; 11():618415. PubMed ID: 33519779
    [Abstract] [Full Text] [Related]

  • 18. Bacillus velezensis: A Valuable Member of Bioactive Molecules within Plant Microbiomes.
    Rabbee MF, Ali MS, Choi J, Hwang BS, Jeong SC, Baek KH.
    Molecules; 2019 Mar 16; 24(6):. PubMed ID: 30884857
    [Abstract] [Full Text] [Related]

  • 19. In Silico Genomic Characterization of Bacillus velezensis Strain AAK_S6 for Secondary Metabolite and Biocontrol Potential.
    Gupta RK, Fuke P, Khardenavis AA, Purohit HJ.
    Curr Microbiol; 2023 Jan 20; 80(2):81. PubMed ID: 36662309
    [Abstract] [Full Text] [Related]

  • 20. The Genome of Bacillus velezensis SC60 Provides Evidence for Its Plant Probiotic Effects.
    Dong X, Tu C, Xie Z, Luo Y, Zhang L, Li Z.
    Microorganisms; 2022 Apr 01; 10(4):. PubMed ID: 35456817
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.