These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


157 related items for PubMed ID: 37177908

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Differential Accumulation of Anthocyanins in Dendrobium officinale Stems with Red and Green Peels.
    Yu Z, Liao Y, Teixeira da Silva JA, Yang Z, Duan J.
    Int J Mol Sci; 2018 Sep 20; 19(10):. PubMed ID: 30241372
    [Abstract] [Full Text] [Related]

  • 5. Transcriptome and metabolome profiling unveil the accumulation of flavonoids in Dendrobium officinale.
    Yuan Y, Zuo J, Zhang H, Zu M, Yu M, Liu S.
    Genomics; 2022 May 20; 114(3):110324. PubMed ID: 35247586
    [Abstract] [Full Text] [Related]

  • 6. Transcriptome and Metabolome Reveal Salt-Stress Responses of Leaf Tissues from Dendrobium officinale.
    Zhang M, Yu Z, Zeng D, Si C, Zhao C, Wang H, Li C, He C, Duan J.
    Biomolecules; 2021 May 15; 11(5):. PubMed ID: 34063498
    [Abstract] [Full Text] [Related]

  • 7. A Comparison of the Flavonoid Biosynthesis Mechanisms of Dendrobium Species by Analyzing the Transcriptome and Metabolome.
    Liu S, Zhang H, Yuan Y.
    Int J Mol Sci; 2022 Oct 09; 23(19):. PubMed ID: 36233278
    [Abstract] [Full Text] [Related]

  • 8. Putative genes in alkaloid biosynthesis identified in Dendrobium officinale by correlating the contents of major bioactive metabolites with genes expression between Protocorm-like bodies and leaves.
    Wang Z, Jiang W, Liu Y, Meng X, Su X, Cao M, Wu L, Yu N, Xing S, Peng D.
    BMC Genomics; 2021 Jul 29; 22(1):579. PubMed ID: 34325653
    [Abstract] [Full Text] [Related]

  • 9. Insights into the Differences in Polysaccharide and Alkaloid Biosynthesis in the Medicinal Orchids Dendrobium nobile and D. officinale.
    Zhang YW, Shi YC, Huang W, Zhang SB.
    Physiol Plant; 2024 Jul 29; 176(5):e14575. PubMed ID: 39394938
    [Abstract] [Full Text] [Related]

  • 10. Tissue-specific transcriptome for Dendrobium officinale reveals genes involved in flavonoid biosynthesis.
    Yuan Y, Zhang J, Liu X, Meng M, Wang J, Lin J.
    Genomics; 2020 Mar 29; 112(2):1781-1794. PubMed ID: 31678153
    [Abstract] [Full Text] [Related]

  • 11. Transcriptome sequencing and metabolite profiling analyses provide comprehensive insight into molecular mechanisms of flower development in Dendrobium officinale (Orchidaceae).
    He C, Liu X, Teixeira da Silva JA, Liu N, Zhang M, Duan J.
    Plant Mol Biol; 2020 Nov 29; 104(4-5):529-548. PubMed ID: 32876816
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. The GDP-mannose transporter gene (DoGMT) from Dendrobium officinale is critical for mannan biosynthesis in plant growth and development.
    Yu Z, He C, Teixeira da Silva JA, Luo J, Yang Z, Duan J.
    Plant Sci; 2018 Dec 29; 277():43-54. PubMed ID: 30466600
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. DcTT8, a bHLH transcription factor, regulates anthocyanin biosynthesis in Dendrobium candidum.
    Jia N, Wang JJ, Liu J, Jiang J, Sun J, Yan P, Sun Y, Wan P, Ye W, Fan B.
    Plant Physiol Biochem; 2021 May 29; 162():603-612. PubMed ID: 33774465
    [Abstract] [Full Text] [Related]

  • 16. [Analysis on stability and antioxidant capacity of color-related components from Dendrobium officinale flower].
    Zhang SJ, Qian Z, Liu JJ, Zhang XF, Si JP.
    Zhongguo Zhong Yao Za Zhi; 2018 May 29; 43(10):2025-2031. PubMed ID: 29933666
    [Abstract] [Full Text] [Related]

  • 17. Comparative metabolomic analyses of Dendrobium officinale Kimura et Migo responding to UV-B radiation reveal variations in the metabolisms associated with its bioactive ingredients.
    Chen Y, Shen Q, Lv P, Sun C.
    PeerJ; 2020 May 29; 8():e9107. PubMed ID: 32655986
    [Abstract] [Full Text] [Related]

  • 18. Ectopic expression of DoFLS1 from Dendrobium officinale enhances flavonol accumulation and abiotic stress tolerance in Arabidopsis thaliana.
    Yu Z, Dong W, Teixeira da Silva JA, He C, Si C, Duan J.
    Protoplasma; 2021 Jul 29; 258(4):803-815. PubMed ID: 33404922
    [Abstract] [Full Text] [Related]

  • 19. Interactions between endophytic fungus Pestalotiopsis sp. DO14 and Dendrobium catenatum: Deciphering plant polysaccharide and flavonoid accumulation and underlying mechanisms by comparative transcriptome and metabolome analyses.
    Chen X, Wang S, Farag MA, Han Z, Chen D, Zhang X, Si J, Wu L.
    Plant Physiol Biochem; 2023 Sep 29; 202():107942. PubMed ID: 37562204
    [Abstract] [Full Text] [Related]

  • 20. Genome-wide identification and characterization of active ingredients related β-Glucosidases in Dendrobium catenatum.
    Wang Z, Zhao M, Zhang X, Deng X, Li J, Wang M.
    BMC Genomics; 2022 Aug 23; 23(1):612. PubMed ID: 35999493
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.