These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


150 related items for PubMed ID: 37182487

  • 1. N-glycan profiles as a tool in qualitative and quantitative analysis of goat milk adulteration.
    Liu Y, Hu X, Voglmeir J, Liu L.
    Food Chem; 2023 Oct 15; 423():136116. PubMed ID: 37182487
    [Abstract] [Full Text] [Related]

  • 2. [Identifying animal-derived components in camel milk and its products by ultra-high performance liquid chromatography-tandem mass spectrometry].
    Gu S, Chen N, Zeng J, Peng X, Zhang M, Gao Y, Pan L, Ge C, Li W, Yi X, Guo D, Deng X.
    Se Pu; 2024 Jan 08; 42(1):13-23. PubMed ID: 38197203
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Quantitative analysis of cow whole milk and whey powder adulteration percentage in goat and sheep milk products by isotopic dilution-ultra-high performance liquid chromatography-tandem mass spectrometry.
    Ke X, Zhang J, Lai S, Chen Q, Zhang Y, Jiang Y, Mo W, Ren Y.
    Anal Bioanal Chem; 2017 Jan 08; 409(1):213-224. PubMed ID: 27761616
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Quantification of cow milk adulteration in goat milk using high-performance liquid chromatography with electrospray ionization mass spectrometry.
    Chen RK, Chang LW, Chung YY, Lee MH, Ling YC.
    Rapid Commun Mass Spectrom; 2004 Jan 08; 18(10):1167-71. PubMed ID: 15150843
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Discrimination of milk species using Raman spectroscopy coupled with partial least squares discriminant analysis in raw and pasteurized milk.
    Yazgan NN, Genis HE, Bulat T, Topcu A, Durna S, Yetisemiyen A, Boyaci IH.
    J Sci Food Agric; 2020 Oct 08; 100(13):4756-4765. PubMed ID: 32458436
    [Abstract] [Full Text] [Related]

  • 14. Identification of cow, buffalo, goat and ewe milk species in fermented dairy products using synchronous fluorescence spectroscopy.
    Genis DO, Bilge G, Sezer B, Durna S, Boyaci IH.
    Food Chem; 2019 Jun 30; 284():60-66. PubMed ID: 30744868
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Use of MALDI-TOF MS technology to evaluate adulteration of small ruminant milk with raw bovine milk.
    Rysova L, Cejnar P, Hanus O, Legarova V, Havlik J, Nejeschlebova H, Nemeckova I, Jedelska R, Bozik M.
    J Dairy Sci; 2022 Jun 30; 105(6):4882-4894. PubMed ID: 35379461
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Possible Alternatives: Identifying and Quantifying Adulteration in Buffalo, Goat, and Camel Milk Using Mid-Infrared Spectroscopy Combined with Modern Statistical Machine Learning Methods.
    Chu C, Wang H, Luo X, Wen P, Nan L, Du C, Fan Y, Gao D, Wang D, Yang Z, Yang G, Liu L, Li Y, Hu B, Abula Z, Zhang S.
    Foods; 2023 Oct 21; 12(20):. PubMed ID: 37893749
    [Abstract] [Full Text] [Related]

  • 19. Authenticity and traceability of goat milk: Molecular mechanism of β-carotene biotransformation and accessibility.
    Zhang R, Jia W.
    Food Chem; 2022 Sep 15; 388():133073. PubMed ID: 35483296
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.