These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


526 related items for PubMed ID: 3719075

  • 1. Inverted micellar intermediates and the transitions between lamellar, cubic, and inverted hexagonal lipid phases. II. Implications for membrane-membrane interactions and membrane fusion.
    Siegel DP.
    Biophys J; 1986 Jun; 49(6):1171-83. PubMed ID: 3719075
    [Abstract] [Full Text] [Related]

  • 2. Inverted micellar intermediates and the transitions between lamellar, cubic, and inverted hexagonal lipid phases. I. Mechanism of the L alpha----HII phase transitions.
    Siegel DP.
    Biophys J; 1986 Jun; 49(6):1155-70. PubMed ID: 3719074
    [Abstract] [Full Text] [Related]

  • 3. Inverted micellar intermediates and the transitions between lamellar, cubic, and inverted hexagonal amphiphile phases. III. Isotropic and inverted cubic state formation via intermediates in transitions between L alpha and HII phases.
    Siegel DP.
    Chem Phys Lipids; 1986 Dec 31; 42(4):279-301. PubMed ID: 3829210
    [Abstract] [Full Text] [Related]

  • 4. Inverted micellar structures in bilayer membranes. Formation rates and half-lives.
    Siegel DP.
    Biophys J; 1984 Feb 31; 45(2):399-420. PubMed ID: 6365189
    [Abstract] [Full Text] [Related]

  • 5. Membrane fusion and the lamellar-to-inverted-hexagonal phase transition in cardiolipin vesicle systems induced by divalent cations.
    Ortiz A, Killian JA, Verkleij AJ, Wilschut J.
    Biophys J; 1999 Oct 31; 77(4):2003-14. PubMed ID: 10512820
    [Abstract] [Full Text] [Related]

  • 6. The modified stalk mechanism of lamellar/inverted phase transitions and its implications for membrane fusion.
    Siegel DP.
    Biophys J; 1999 Jan 31; 76(1 Pt 1):291-313. PubMed ID: 9876142
    [Abstract] [Full Text] [Related]

  • 7. Membrane contact, fusion, and hexagonal (HII) transitions in phosphatidylethanolamine liposomes.
    Allen TM, Hong K, Papahadjopoulos D.
    Biochemistry; 1990 Mar 27; 29(12):2976-85. PubMed ID: 2337577
    [Abstract] [Full Text] [Related]

  • 8. Fusion of phosphatidylethanolamine-containing liposomes and mechanism of the L alpha-HII phase transition.
    Ellens H, Bentz J, Szoka FC.
    Biochemistry; 1986 Jul 15; 25(14):4141-7. PubMed ID: 3741846
    [Abstract] [Full Text] [Related]

  • 9. The mechanism of lamellar-to-inverted hexagonal phase transitions in phosphatidylethanolamine: implications for membrane fusion mechanisms.
    Siegel DP, Epand RM.
    Biophys J; 1997 Dec 15; 73(6):3089-111. PubMed ID: 9414222
    [Abstract] [Full Text] [Related]

  • 10. Membrane fusion and inverted phases.
    Ellens H, Siegel DP, Alford D, Yeagle PL, Boni L, Lis LJ, Quinn PJ, Bentz J.
    Biochemistry; 1989 May 02; 28(9):3692-703. PubMed ID: 2751990
    [Abstract] [Full Text] [Related]

  • 11. X-ray diffraction study of the polymorphic behavior of N-methylated dioleoylphosphatidylethanolamine.
    Gruner SM, Tate MW, Kirk GL, So PT, Turner DC, Keane DT, Tilcock CP, Cullis PR.
    Biochemistry; 1988 Apr 19; 27(8):2853-66. PubMed ID: 3401452
    [Abstract] [Full Text] [Related]

  • 12. Proton induced vesicle fusion and the isothermal lalpha-->HII phase transition of lipid bilayers: a 31P-NMR and titration calorimetry study.
    Wenk MR, Seelig J.
    Biochim Biophys Acta; 1998 Jul 17; 1372(2):227-36. PubMed ID: 9675291
    [Abstract] [Full Text] [Related]

  • 13. Influenza hemagglutinin-mediated membrane fusion does not involve inverted phase lipid intermediates.
    Stegmann T.
    J Biol Chem; 1993 Jan 25; 268(3):1716-22. PubMed ID: 8420949
    [Abstract] [Full Text] [Related]

  • 14. Ca2+ and pH induced fusion of small unilamellar vesicles consisting of phosphatidylethanolamine and negatively charged phospholipids: a freeze fracture study.
    Hope MJ, Walker DC, Cullis PR.
    Biochem Biophys Res Commun; 1983 Jan 14; 110(1):15-22. PubMed ID: 6838506
    [Abstract] [Full Text] [Related]

  • 15. The thermotropic phase behaviour and phase structure of a homologous series of racemic beta-D-galactosyl dialkylglycerols studied by differential scanning calorimetry and X-ray diffraction.
    Mannock DA, Collins MD, Kreichbaum M, Harper PE, Gruner SM, McElhaney RN.
    Chem Phys Lipids; 2007 Jul 14; 148(1):26-50. PubMed ID: 17524381
    [Abstract] [Full Text] [Related]

  • 16. The kinetics of non-lamellar phase formation in DOPE-Me: relevance to biomembrane fusion.
    Cherezov V, Siegel DP, Shaw W, Burgess SW, Caffrey M.
    J Membr Biol; 2003 Oct 01; 195(3):165-82. PubMed ID: 14724762
    [Abstract] [Full Text] [Related]

  • 17. Fluorescence depolarization study of lamellar liquid crystalline to inverted cylindrical micellar phase transition of phosphatidylethanolamine.
    Cheng KH.
    Biophys J; 1989 Jun 01; 55(6):1025-31. PubMed ID: 2765643
    [Abstract] [Full Text] [Related]

  • 18. Fusion of influenza virus with sialic acid-bearing target membranes.
    Alford D, Ellens H, Bentz J.
    Biochemistry; 1994 Mar 01; 33(8):1977-87. PubMed ID: 8117654
    [Abstract] [Full Text] [Related]

  • 19. Thermodynamic, motional, and structural aspects of gramicidin-induced hexagonal HII phase formation in phosphatidylethanolamine.
    Killian JA, de Kruijff B.
    Biochemistry; 1985 Dec 31; 24(27):7881-90. PubMed ID: 2418874
    [Abstract] [Full Text] [Related]

  • 20. Destabilization of phosphatidylethanolamine-containing liposomes: hexagonal phase and asymmetric membranes.
    Bentz J, Ellens H, Szoka FC.
    Biochemistry; 1987 Apr 21; 26(8):2105-16. PubMed ID: 3620441
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 27.