These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


156 related items for PubMed ID: 37193329

  • 21. Structural characterization of a rhamnolipid-type biosurfactant produced by Pseudomonas aeruginosa MR01: enhancement of di-rhamnolipid proportion using gamma irradiation.
    Lotfabad TB, Abassi H, Ahmadkhaniha R, Roostaazad R, Masoomi F, Zahiri HS, Ahmadian G, Vali H, Noghabi KA.
    Colloids Surf B Biointerfaces; 2010 Dec 01; 81(2):397-405. PubMed ID: 20732795
    [Abstract] [Full Text] [Related]

  • 22. Micellization of Rhamnolipid Biosurfactants and Their Applications in Oil Recovery: Insights from Mesoscale Simulations.
    Lee MT.
    J Phys Chem B; 2021 Sep 02; 125(34):9895-9909. PubMed ID: 34423979
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. The Systematic Investigation of the Quorum Sensing System of the Biocontrol Strain Pseudomonas chlororaphis subsp. aurantiaca PB-St2 Unveils aurI to Be a Biosynthetic Origin for 3-Oxo-Homoserine Lactones.
    Bauer JS, Hauck N, Christof L, Mehnaz S, Gust B, Gross H.
    PLoS One; 2016 Sep 02; 11(11):e0167002. PubMed ID: 27861617
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Regulation of phenazine-1-carboxamide production by quorum sensing in type strains of Pseudomonas chlororaphis subsp. chlororaphis and Pseudomonas chlororaphis subsp. piscium.
    Morohoshi T, Yabe N, Yaguchi N, Xie X, Someya N.
    J Biosci Bioeng; 2022 Jun 02; 133(6):541-546. PubMed ID: 35365429
    [Abstract] [Full Text] [Related]

  • 27. Comparison of mono-rhamnolipids and di-rhamnolipids on microbial enhanced oil recovery (MEOR) applications.
    Rocha VAL, de Castilho LVA, de Castro RPV, Teixeira DB, Magalhães AV, Gomez JGC, Freire DMG.
    Biotechnol Prog; 2020 Jul 02; 36(4):e2981. PubMed ID: 32083814
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Rhamnolipids from non-pathogenic Acinetobacter calcoaceticus: Bioreactor-scale production, characterization and wound healing potency.
    Zhu P, Zhang S, Kumar R, Zhang Z, Zhang Z, Wang Y, Jiang X, Lin K, Kaur G, Yung KKL.
    N Biotechnol; 2022 Mar 25; 67():23-31. PubMed ID: 34890838
    [Abstract] [Full Text] [Related]

  • 31. Identification and characterization of biosurfactants produced by the Arctic bacterium Pseudomonas putida BD2.
    Janek T, Lukaszewicz M, Krasowska A.
    Colloids Surf B Biointerfaces; 2013 Oct 01; 110():379-86. PubMed ID: 23751417
    [Abstract] [Full Text] [Related]

  • 32. Core Flood study for enhanced oil recovery through ex-situ bioaugmentation with thermo- and halo-tolerant rhamnolipid produced by Pseudomonas aeruginosa NCIM 5514.
    Varjani SJ, Upasani VN.
    Bioresour Technol; 2016 Nov 01; 220():175-182. PubMed ID: 27567478
    [Abstract] [Full Text] [Related]

  • 33. Cytotoxic effects of mono- and di-rhamnolipids from Pseudomonas aeruginosa MR01 on MCF-7 human breast cancer cells.
    Rahimi K, Lotfabad TB, Jabeen F, Mohammad Ganji S.
    Colloids Surf B Biointerfaces; 2019 Sep 01; 181():943-952. PubMed ID: 31382344
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Cytotoxicity of di-rhamnolipids produced by Pseudomonas aeruginosa RA5 against human cancerous cell lines.
    Ankulkar R, Chavan S, Aphale D, Chavan M, Mirza Y.
    3 Biotech; 2022 Nov 01; 12(11):323. PubMed ID: 36276467
    [Abstract] [Full Text] [Related]

  • 36. Emulsifying Properties of Rhamnolipids and Their In Vitro Antifungal Activity against Plant Pathogenic Fungi.
    Li D, Tao W, Yu D, Li S.
    Molecules; 2022 Nov 10; 27(22):. PubMed ID: 36431843
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Genome-driven investigation of compatible solute biosynthesis pathways of Pseudomonas syringae pv. syringae and their contribution to water stress tolerance.
    Kurz M, Burch AY, Seip B, Lindow SE, Gross H.
    Appl Environ Microbiol; 2010 Aug 10; 76(16):5452-62. PubMed ID: 20581190
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.