These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


169 related items for PubMed ID: 37216122

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Toward Methanol Production by CO2 Hydrogenation beyond Formic Acid Formation.
    Onishi N, Himeda Y.
    Acc Chem Res; 2024 Oct 01; 57(19):2816-2825. PubMed ID: 39284577
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Catalytic Hydrogenation of CO2 to Methanol Using Multinuclear Iridium Complexes in a Gas-Solid Phase Reaction.
    Kanega R, Onishi N, Tanaka S, Kishimoto H, Himeda Y.
    J Am Chem Soc; 2021 Jan 27; 143(3):1570-1576. PubMed ID: 33439639
    [Abstract] [Full Text] [Related]

  • 6. Catalytic Hydrogenation of CO2 to Formate Using Ruthenium Nanoparticles Immobilized on Supported Ionic Liquid Phases.
    Louis Anandaraj SJ, Kang L, DeBeer S, Bordet A, Leitner W.
    Small; 2023 May 27; 19(18):e2206806. PubMed ID: 36709493
    [Abstract] [Full Text] [Related]

  • 7. Hydrogenation of CO2 to Formate over Ruthenium Immobilized on Solid Molecular Phosphines.
    Kann A, Hartmann H, Besmehn A, Hausoul PJC, Palkovits R.
    ChemSusChem; 2018 Jun 11; 11(11):1857-1865. PubMed ID: 29694717
    [Abstract] [Full Text] [Related]

  • 8. Hydrogenation of CO2 to Formic Acid with a Highly Active Ruthenium Acriphos Complex in DMSO and DMSO/Water.
    Rohmann K, Kothe J, Haenel MW, Englert U, Hölscher M, Leitner W.
    Angew Chem Int Ed Engl; 2016 Jul 25; 55(31):8966-9. PubMed ID: 27356513
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Solvent- and Catalyst-Free Carbon Dioxide Capture and Reduction to Formate with Borohydride Ionic Liquid.
    Lombardo L, Yang H, Zhao K, Dyson PJ, Züttel A.
    ChemSusChem; 2020 Apr 21; 13(8):2025-2031. PubMed ID: 31994287
    [Abstract] [Full Text] [Related]

  • 14. Aqueous Biphasic Systems for the Synthesis of Formates by Catalytic CO2 Hydrogenation: Integrated Reaction and Catalyst Separation for CO2 -Scrubbing Solutions.
    Scott M, Blas Molinos B, Westhues C, Franciò G, Leitner W.
    ChemSusChem; 2017 Mar 22; 10(6):1085-1093. PubMed ID: 28103428
    [Abstract] [Full Text] [Related]

  • 15. Hydrogen storage and delivery: the carbon dioxide - formic acid couple.
    Laurenczy G.
    Chimia (Aarau); 2011 Mar 22; 65(9):663-6. PubMed ID: 22026175
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Hydrogenation of CO2 to formic acid promoted by a diamine-functionalized ionic liquid.
    Zhang Z, Hu S, Song J, Li W, Yang G, Han B.
    ChemSusChem; 2009 Mar 22; 2(3):234-8. PubMed ID: 19266516
    [Abstract] [Full Text] [Related]

  • 18. Hydrogenation of CO2 to MeOH Catalyzed by Highly Robust (PNNP)Ir Complexes Activated by Alkali Bases in Alcohol.
    Grømer B, Saito S.
    Inorg Chem; 2023 Aug 28; 62(34):14116-14123. PubMed ID: 37589272
    [Abstract] [Full Text] [Related]

  • 19. The superiority of Pd2+ in CO2 hydrogenation to formic acid.
    Wang Y, Dong M, Li S, Chen B, Liu H, Han B.
    Chem Sci; 2024 Apr 17; 15(15):5525-5530. PubMed ID: 38638229
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.