These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


128 related items for PubMed ID: 3722204

  • 1. Disulfide-bonded polymerization of plasma fibronectin in the presence of metal ions.
    Vartio T.
    J Biol Chem; 1986 Jul 15; 261(20):9433-7. PubMed ID: 3722204
    [Abstract] [Full Text] [Related]

  • 2. In vitro formation of disulfide-bonded fibronectin multimers.
    Mosher DF, Johnson RB.
    J Biol Chem; 1983 May 25; 258(10):6595-601. PubMed ID: 6133865
    [Abstract] [Full Text] [Related]

  • 3. Cell-free formation of disulfide-bonded multimer from isolated plasma fibronectin in the presence of a low concentration of SH reagent under a physiological condition.
    Sakai K, Fujii T, Hayashi T.
    J Biochem; 1994 Mar 25; 115(3):415-21. PubMed ID: 8056752
    [Abstract] [Full Text] [Related]

  • 4. Disulfide-bonded dimerization of fibronectin in vitro.
    Vartio T, Kuusela P.
    Eur J Biochem; 1991 Dec 05; 202(2):597-604. PubMed ID: 1761059
    [Abstract] [Full Text] [Related]

  • 5. Mechanism of formation of disulfide-bonded multimers of plasma fibronectin in cell layers of cultured human fibroblasts.
    McKeown-Longo PJ, Mosher DF.
    J Biol Chem; 1984 Oct 10; 259(19):12210-5. PubMed ID: 6480605
    [Abstract] [Full Text] [Related]

  • 6. Thiol-disulfide exchange by thrombospondin: evidence for a thiol and a disulfide bond protected by calcium.
    Turk JL, Detwiler TC.
    Arch Biochem Biophys; 1986 Mar 10; 245(2):446-54. PubMed ID: 3954362
    [Abstract] [Full Text] [Related]

  • 7. Domain structure of fibronectin and its relation to function. Disulfides and sulfhydryl groups.
    Wagner DD, Hynes RO.
    J Biol Chem; 1979 Jul 25; 254(14):6746-54. PubMed ID: 447746
    [Abstract] [Full Text] [Related]

  • 8. Formation of sodium dodecyl sulfate-stable fibronectin multimers. Failure to detect products of thiol-disulfide exchange in cyanogen bromide or limited acid digests of stabilized matrix fibronectin.
    Chen H, Mosher DF.
    J Biol Chem; 1996 Apr 12; 271(15):9084-9. PubMed ID: 8621558
    [Abstract] [Full Text] [Related]

  • 9. Generation of oligomeric insulin receptor forms by intramolecular sulfhydryl-disulfide exchange. Involvement of masked sulfhydryl groups.
    Krämer H, Deger A, Koch R, Rapp R, Hinz M, Weber U.
    Biol Chem Hoppe Seyler; 1987 May 12; 368(5):471-9. PubMed ID: 3304334
    [Abstract] [Full Text] [Related]

  • 10. Early and late cathepsin D-derived fragments of fibronectin containing the C-terminal interchain disulfide cross-link.
    Richter H, Hörmann H.
    Hoppe Seylers Z Physiol Chem; 1982 Apr 12; 363(4):351-64. PubMed ID: 7076131
    [Abstract] [Full Text] [Related]

  • 11. Domain structure of human plasma and cellular fibronectin. Use of a monoclonal antibody and heparin affinity to identify three different subunit chains.
    Click EM, Balian G.
    Biochemistry; 1985 Nov 05; 24(23):6685-96. PubMed ID: 2417623
    [Abstract] [Full Text] [Related]

  • 12. Regular fragmentation of hydrogen peroxide-treated fibronectin.
    Vartio T.
    J Biol Chem; 1989 Mar 15; 264(8):4471-5. PubMed ID: 2538445
    [Abstract] [Full Text] [Related]

  • 13. Thiol-disulfide isomerization in thrombospondin: effects of conformation and protein disulfide isomerase.
    Huang EM, Detwiler TC, Milev Y, Essex DW.
    Blood; 1997 May 01; 89(9):3205-12. PubMed ID: 9129024
    [Abstract] [Full Text] [Related]

  • 14. Mechanisms for the spontaneous formation of covalently linked polymers of the terminal membranolytic complement protein (C9).
    Yamamoto K, Migita S.
    J Biol Chem; 1983 Jul 10; 258(13):7887-9. PubMed ID: 6863269
    [Abstract] [Full Text] [Related]

  • 15. Primary structure of human plasma fibronectin--characterization of the 6,000 dalton C-terminal fragment containing the interchain disulfide bridges.
    Garcia-Pardo A, Pearlstein E, Frangione B.
    Biochem Biophys Res Commun; 1984 May 16; 120(3):1015-21. PubMed ID: 6732781
    [Abstract] [Full Text] [Related]

  • 16. Identification of a plasma gelatinase in preparations of fibronectin.
    Johansson S, Smedsrød B.
    J Biol Chem; 1986 Apr 05; 261(10):4363-6. PubMed ID: 3007451
    [Abstract] [Full Text] [Related]

  • 17. Identification of plasma proteins containing sulfite-reactive disulfide bonds.
    Gregory RE, Gunnison AF.
    Chem Biol Interact; 1984 Apr 05; 49(1-2):55-69. PubMed ID: 6722940
    [Abstract] [Full Text] [Related]

  • 18. Sulfhydryl groups in glycolipid transfer protein: formation of an intramolecular disulfide bond and oligomers by Cu2+-catalyzed oxidation.
    Abe A, Sasaki T.
    Biochim Biophys Acta; 1989 Oct 02; 985(1):38-44. PubMed ID: 2790045
    [Abstract] [Full Text] [Related]

  • 19. Inactivation of human fibroblast growth factor-1 (FGF-1) activity by interaction with copper ions involves FGF-1 dimer formation induced by copper-catalyzed oxidation.
    Engleka KA, Maciag T.
    J Biol Chem; 1992 Jun 05; 267(16):11307-15. PubMed ID: 1375939
    [Abstract] [Full Text] [Related]

  • 20. Substructural analysis of the insulin receptor by microsequence analyses of limited tryptic fragments isolated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the absence or presence of dithiothreitol.
    Xu QY, Paxton RJ, Fujita-Yamaguchi Y.
    J Biol Chem; 1990 Oct 25; 265(30):18673-81. PubMed ID: 2211730
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.