These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


122 related items for PubMed ID: 37254814

  • 21. Two CRISPR/Cas9-mediated methods for targeting complex insertions, deletions, or replacements in mouse.
    Pineault KM, Novoa A, Lozovska A, Wellik DM, Mallo M.
    MethodsX; 2019; 6():2088-2100. PubMed ID: 31667107
    [Abstract] [Full Text] [Related]

  • 22. Easi-CRISPR for creating knock-in and conditional knockout mouse models using long ssDNA donors.
    Miura H, Quadros RM, Gurumurthy CB, Ohtsuka M.
    Nat Protoc; 2018 Jan; 13(1):195-215. PubMed ID: 29266098
    [Abstract] [Full Text] [Related]

  • 23. CRISPR/Cas9-Assisted Seamless Genome Editing in Lactobacillus plantarum and Its Application in N-Acetylglucosamine Production.
    Zhou D, Jiang Z, Pang Q, Zhu Y, Wang Q, Qi Q.
    Appl Environ Microbiol; 2019 Nov 01; 85(21):. PubMed ID: 31444197
    [Abstract] [Full Text] [Related]

  • 24. New Additions to the CRISPR Toolbox: CRISPR-CLONInG and CRISPR-CLIP for Donor Construction in Genome Editing.
    Shola DTN, Yang C, Kewaldar VS, Kar P, Bustos V.
    CRISPR J; 2020 Apr 01; 3(2):109-122. PubMed ID: 32315232
    [Abstract] [Full Text] [Related]

  • 25. Reliable CRISPR/Cas9 Genome Engineering in Caenorhabditis elegans Using a Single Efficient sgRNA and an Easily Recognizable Phenotype.
    El Mouridi S, Lecroisey C, Tardy P, Mercier M, Leclercq-Blondel A, Zariohi N, Boulin T.
    G3 (Bethesda); 2017 May 05; 7(5):1429-1437. PubMed ID: 28280211
    [Abstract] [Full Text] [Related]

  • 26. Efficient Genome Editing in Caenorhabditis elegans with a Toolkit of Dual-Marker Selection Cassettes.
    Norris AD, Kim HM, Colaiácovo MP, Calarco JA.
    Genetics; 2015 Oct 05; 201(2):449-58. PubMed ID: 26232410
    [Abstract] [Full Text] [Related]

  • 27. CRISPR/Cas9 Methodology for the Generation of Knockout Deletions in Caenorhabditis elegans.
    Au V, Li-Leger E, Raymant G, Flibotte S, Chen G, Martin K, Fernando L, Doell C, Rosell FI, Wang S, Edgley ML, Rougvie AE, Hutter H, Moerman DG.
    G3 (Bethesda); 2019 Jan 09; 9(1):135-144. PubMed ID: 30420468
    [Abstract] [Full Text] [Related]

  • 28. Analyses of point mutation repair and allelic heterogeneity generated by CRISPR/Cas9 and single-stranded DNA oligonucleotides.
    Bialk P, Sansbury B, Rivera-Torres N, Bloh K, Man D, Kmiec EB.
    Sci Rep; 2016 Sep 09; 6():32681. PubMed ID: 27609304
    [Abstract] [Full Text] [Related]

  • 29. Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in Leishmania.
    Zhang WW, Matlashewski G.
    mSphere; 2019 Aug 21; 4(4):. PubMed ID: 31434745
    [Abstract] [Full Text] [Related]

  • 30. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum.
    Jiang Y, Qian F, Yang J, Liu Y, Dong F, Xu C, Sun B, Chen B, Xu X, Li Y, Wang R, Yang S.
    Nat Commun; 2017 May 04; 8():15179. PubMed ID: 28469274
    [Abstract] [Full Text] [Related]

  • 31. Rapid and precise engineering of the Caenorhabditis elegans genome with lethal mutation co-conversion and inactivation of NHEJ repair.
    Ward JD.
    Genetics; 2015 Feb 04; 199(2):363-77. PubMed ID: 25491644
    [Abstract] [Full Text] [Related]

  • 32. Highly Efficient, Rapid and Co-CRISPR-Independent Genome Editing in Caenorhabditis elegans.
    Prior H, Jawad AK, MacConnachie L, Beg AA.
    G3 (Bethesda); 2017 Nov 06; 7(11):3693-3698. PubMed ID: 28893845
    [Abstract] [Full Text] [Related]

  • 33. Scalable and versatile genome editing using linear DNAs with microhomology to Cas9 Sites in Caenorhabditis elegans.
    Paix A, Wang Y, Smith HE, Lee CY, Calidas D, Lu T, Smith J, Schmidt H, Krause MW, Seydoux G.
    Genetics; 2014 Dec 06; 198(4):1347-56. PubMed ID: 25249454
    [Abstract] [Full Text] [Related]

  • 34. CRISPR-mediated knock-in in the mouse embryo using long single stranded DNA donors synthesised by biotinylated PCR.
    Bennett H, Aguilar-Martinez E, Adamson AD.
    Methods; 2021 Jul 06; 191():3-14. PubMed ID: 33172594
    [Abstract] [Full Text] [Related]

  • 35. Combination of ssDNA recombineering and CRISPR-Cas9 for Pseudomonas putida KT2440 genome editing.
    Wu Z, Chen Z, Gao X, Li J, Shang G.
    Appl Microbiol Biotechnol; 2019 Mar 06; 103(6):2783-2795. PubMed ID: 30762073
    [Abstract] [Full Text] [Related]

  • 36. Melting dsDNA Donor Molecules Greatly Improves Precision Genome Editing in Caenorhabditis elegans.
    Ghanta KS, Mello CC.
    Genetics; 2020 Nov 06; 216(3):643-650. PubMed ID: 32963112
    [Abstract] [Full Text] [Related]

  • 37. [CRISPR-Cas9 mediated genome editing in Caenorhabditis elegans].
    Meng X, Zhou H, Xu S.
    Sheng Wu Gong Cheng Xue Bao; 2017 Oct 25; 33(10):1693-1699. PubMed ID: 29082717
    [Abstract] [Full Text] [Related]

  • 38. 5'-Modifications improve potency and efficacy of DNA donors for precision genome editing.
    Ghanta KS, Chen Z, Mir A, Dokshin GA, Krishnamurthy PM, Yoon Y, Gallant J, Xu P, Zhang XO, Ozturk AR, Shin M, Idrizi F, Liu P, Gneid H, Edraki A, Lawson ND, Rivera-Pérez JA, Sontheimer EJ, Watts JK, Mello CC.
    Elife; 2021 Oct 19; 10():. PubMed ID: 34665130
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. Efficient oligo nucleotide mediated CRISPR-Cas9 gene editing in Aspergilli.
    Nødvig CS, Hoof JB, Kogle ME, Jarczynska ZD, Lehmbeck J, Klitgaard DK, Mortensen UH.
    Fungal Genet Biol; 2018 Jun 19; 115():78-89. PubMed ID: 29325827
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.