These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


137 related items for PubMed ID: 37270971

  • 1. Evaluation of the adulteration of camel milk by non-camel milk using multispectral image, fluorescence and infrared spectroscopy.
    Boukria O, Boudalia S, Bhat ZF, Hassoun A, Aït-Kaddour A.
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Nov 05; 300():122932. PubMed ID: 37270971
    [Abstract] [Full Text] [Related]

  • 2. Identification and quantification of goat milk adulteration using mid-infrared spectroscopy and chemometrics.
    Du C, Zhao X, Chu C, Nan L, Ren X, Yan L, Zhang X, Zhang S, Teng Z.
    Spectrochim Acta A Mol Biomol Spectrosc; 2025 Jan 05; 324():124969. PubMed ID: 39153347
    [Abstract] [Full Text] [Related]

  • 3. Rapid quantification of goat milk adulteration with cow milk using Raman spectroscopy and chemometrics.
    Li W, Huang W, Fan D, Gao X, Zhang X, Meng Y, Liu TC.
    Anal Methods; 2023 Jan 26; 15(4):455-461. PubMed ID: 36602089
    [Abstract] [Full Text] [Related]

  • 4. Development of new NIR-spectroscopy method combined with multivariate analysis for detection of adulteration in camel milk with goat milk.
    Mabood F, Jabeen F, Ahmed M, Hussain J, Al Mashaykhi SAA, Al Rubaiey ZMA, Farooq S, Boqué R, Ali L, Hussain Z, Al-Harrasi A, Khan AL, Naureen Z, Idrees M, Manzoor S.
    Food Chem; 2017 Apr 15; 221():746-750. PubMed ID: 27979267
    [Abstract] [Full Text] [Related]

  • 5. Discrimination of milk species using Raman spectroscopy coupled with partial least squares discriminant analysis in raw and pasteurized milk.
    Yazgan NN, Genis HE, Bulat T, Topcu A, Durna S, Yetisemiyen A, Boyaci IH.
    J Sci Food Agric; 2020 Oct 15; 100(13):4756-4765. PubMed ID: 32458436
    [Abstract] [Full Text] [Related]

  • 6. [Identifying animal-derived components in camel milk and its products by ultra-high performance liquid chromatography-tandem mass spectrometry].
    Gu S, Chen N, Zeng J, Peng X, Zhang M, Gao Y, Pan L, Ge C, Li W, Yi X, Guo D, Deng X.
    Se Pu; 2024 Jan 08; 42(1):13-23. PubMed ID: 38197203
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Identification of Milk Adulteration in Camel Milk Using FT-Mid-Infrared Spectroscopy and Machine Learning Models.
    Yao Z, Zhang X, Nie P, Lv H, Yang Y, Zou W, Yang L.
    Foods; 2023 Dec 18; 12(24):. PubMed ID: 38137321
    [Abstract] [Full Text] [Related]

  • 9. Discrimination of lamb (Ovis aries), emu (Dromaius novaehollandiae), camel (Camelus dromedarius) and beef (Bos taurus) binary mixtures using a portable near infrared instrument combined with chemometrics.
    Hoffman L, Ingle P, Hemant Khole A, Zhang S, Yang Z, Beya M, Bureš D, Cozzolino D.
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jun 05; 294():122506. PubMed ID: 36868023
    [Abstract] [Full Text] [Related]

  • 10. Rapid detection and quantification of milk adulterants using a nanoclusters-based fluorescent optical tongue.
    Ghohestani E, Tashkhourian J, Hemmateenejad B.
    Food Chem; 2024 Oct 30; 456():139973. PubMed ID: 38852440
    [Abstract] [Full Text] [Related]

  • 11. Rapid detection and quantification of milk adulteration using infrared microspectroscopy and chemometrics analysis.
    Santos PM, Pereira-Filho ER, Rodriguez-Saona LE.
    Food Chem; 2013 May 01; 138(1):19-24. PubMed ID: 23265450
    [Abstract] [Full Text] [Related]

  • 12. Prediction of fatty acid profiles in cow, ewe, and goat milk by mid-infrared spectrometry.
    Ferrand-Calmels M, Palhière I, Brochard M, Leray O, Astruc JM, Aurel MR, Barbey S, Bouvier F, Brunschwig P, Caillat H, Douguet M, Faucon-Lahalle F, Gelé M, Thomas G, Trommenschlager JM, Larroque H.
    J Dairy Sci; 2014 May 01; 97(1):17-35. PubMed ID: 24268398
    [Abstract] [Full Text] [Related]

  • 13. Application of hand-held and portable infrared spectrometers in bovine milk analysis.
    Santos PM, Pereira-Filho ER, Rodriguez-Saona LE.
    J Agric Food Chem; 2013 Feb 13; 61(6):1205-11. PubMed ID: 23339381
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Camel milk ameliorates hyperglycaemia and oxidative damage in type-1 diabetic experimental rats.
    Meena S, Rajput YS, Pandey AK, Sharma R, Singh R.
    J Dairy Res; 2016 Aug 13; 83(3):412-9. PubMed ID: 27600979
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Potentiality of using front face fluorescence spectroscopy for quantitative analysis of cow milk adulteration in buffalo milk.
    Ullah R, Khan S, Ali H, Bilal M.
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jan 15; 225():117518. PubMed ID: 31518755
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Fluorescence Spectroscopy Based Detection of Adulteration in Desi Ghee.
    Saleem M.
    J Fluoresc; 2020 Jan 15; 30(1):181-191. PubMed ID: 31940104
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.