These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


163 related items for PubMed ID: 37286072

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH, Park SH, Oh YH, Choi JW, Lee MH, Cho JS, Jeong KJ, Joo JC, Yu J, Park SJ, Lee SY.
    Microb Cell Fact; 2016 Oct 07; 15(1):174. PubMed ID: 27717386
    [Abstract] [Full Text] [Related]

  • 7. Highly Efficient Production of l-Histidine from Glucose by Metabolically Engineered Escherichia coli.
    Wu H, Tian D, Fan X, Fan W, Zhang Y, Jiang S, Wen C, Ma Q, Chen N, Xie X.
    ACS Synth Biol; 2020 Jul 17; 9(7):1813-1822. PubMed ID: 32470291
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Reconstructing a recycling and nonauxotroph biosynthetic pathway in Escherichia coli toward highly efficient production of L-citrulline.
    Jiang S, Wang D, Wang R, Zhao C, Ma Q, Wu H, Xie X.
    Metab Eng; 2021 Nov 17; 68():220-231. PubMed ID: 34688880
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Improvement of the redox balance increases L-valine production by Corynebacterium glutamicum under oxygen deprivation conditions.
    Hasegawa S, Uematsu K, Natsuma Y, Suda M, Hiraga K, Jojima T, Inui M, Yukawa H.
    Appl Environ Microbiol; 2012 Feb 17; 78(3):865-75. PubMed ID: 22138982
    [Abstract] [Full Text] [Related]

  • 12. Metabolic engineering of Corynebacterium glutamicum for 2-ketoisocaproate production.
    Bückle-Vallant V, Krause FS, Messerschmidt S, Eikmanns BJ.
    Appl Microbiol Biotechnol; 2014 Jan 17; 98(1):297-311. PubMed ID: 24169948
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Evaluation of Metabolic Engineering Strategies on 2-Ketoisovalerate Production by Escherichia coli.
    Zhou L, Zhu Y, Yuan Z, Liu G, Sun Z, Du S, Liu H, Li Y, Liu H, Zhou Z.
    Appl Environ Microbiol; 2022 Sep 13; 88(17):e0097622. PubMed ID: 35980178
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli.
    Meng J, Wang B, Liu D, Chen T, Wang Z, Zhao X.
    Microb Cell Fact; 2016 Aug 12; 15(1):141. PubMed ID: 27520031
    [Abstract] [Full Text] [Related]

  • 18. Metabolic Engineering of Corynebacterium glutamicum for the High-Level Production of l-Valine under Aerobic Conditions.
    Wang F, Cai N, Leng Y, Wu C, Wang Y, Tian S, Zhang C, Xu Q, Peng H, Chen N, Li Y.
    ACS Synth Biol; 2024 Sep 20; 13(9):2861-2872. PubMed ID: 38946081
    [Abstract] [Full Text] [Related]

  • 19. An NADPH-auxotrophic Corynebacterium glutamicum recombinant strain and used it to construct L-leucine high-yielding strain.
    Chen SL, Liu TS, Zhang WG, Xu JZ.
    Int Microbiol; 2023 Jan 20; 26(1):11-24. PubMed ID: 35925494
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.