These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


186 related items for PubMed ID: 37291396

  • 21. Phytochrome B binds with greater apparent affinity than phytochrome A to the basic helix-loop-helix factor PIF3 in a reaction requiring the PAS domain of PIF3.
    Zhu Y, Tepperman JM, Fairchild CD, Quail PH.
    Proc Natl Acad Sci U S A; 2000 Nov 21; 97(24):13419-24. PubMed ID: 11069292
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Two Distinct Molecular Types of Phytochrome A in Plants: Evidence of Existence and Implications for Functioning.
    Sineshchekov VA.
    Int J Mol Sci; 2023 May 02; 24(9):. PubMed ID: 37175844
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Cryptochromes, phytochromes, and COP1 regulate light-controlled stomatal development in Arabidopsis.
    Kang CY, Lian HL, Wang FF, Huang JR, Yang HQ.
    Plant Cell; 2009 Sep 02; 21(9):2624-41. PubMed ID: 19794114
    [Abstract] [Full Text] [Related]

  • 26. Phytochrome induces rapid PIF5 phosphorylation and degradation in response to red-light activation.
    Shen Y, Khanna R, Carle CM, Quail PH.
    Plant Physiol; 2007 Nov 02; 145(3):1043-51. PubMed ID: 17827270
    [Abstract] [Full Text] [Related]

  • 27. Chromophore-bearing NH2-terminal domains of phytochromes A and B determine their photosensory specificity and differential light lability.
    Wagner D, Fairchild CD, Kuhn RM, Quail PH.
    Proc Natl Acad Sci U S A; 1996 Apr 30; 93(9):4011-5. PubMed ID: 8633007
    [Abstract] [Full Text] [Related]

  • 28. Two native pools of phytochrome A in monocots: Evidence from fluorescence investigations of phytochrome mutants of rice.
    Sineshchekov V, Loskovich A, Inagaki N, Takano M.
    Photochem Photobiol; 2006 Apr 30; 82(4):1116-22. PubMed ID: 17205634
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Crystal structure of the photosensing module from a red/far-red light-absorbing plant phytochrome.
    Burgie ES, Bussell AN, Walker JM, Dubiel K, Vierstra RD.
    Proc Natl Acad Sci U S A; 2014 Jul 15; 111(28):10179-84. PubMed ID: 24982198
    [Abstract] [Full Text] [Related]

  • 31. Structure-guided engineering of plant phytochrome B with altered photochemistry and light signaling.
    Zhang J, Stankey RJ, Vierstra RD.
    Plant Physiol; 2013 Mar 15; 161(3):1445-57. PubMed ID: 23321421
    [Abstract] [Full Text] [Related]

  • 32. Fluence and wavelength requirements for Arabidopsis CAB gene induction by different phytochromes.
    Hamazato F, Shinomura T, Hanzawa H, Chory J, Furuya M.
    Plant Physiol; 1997 Dec 15; 115(4):1533-40. PubMed ID: 9414562
    [Abstract] [Full Text] [Related]

  • 33. Genetic interactions between brassinosteroid-inactivating P450s and photomorphogenic photoreceptors in Arabidopsis thaliana.
    Sandhu KS, Hagely K, Neff MM.
    G3 (Bethesda); 2012 Dec 15; 2(12):1585-93. PubMed ID: 23275881
    [Abstract] [Full Text] [Related]

  • 34. Seed germination of Arabidopsis thaliana phyA/phyB double mutants is under phytochrome control.
    Poppe C, Schäfer E.
    Plant Physiol; 1997 Aug 15; 114(4):1487-92. PubMed ID: 9276958
    [Abstract] [Full Text] [Related]

  • 35. Nuclear accumulation of the phytochrome A photoreceptor requires FHY1.
    Hiltbrunner A, Viczián A, Bury E, Tscheuschler A, Kircher S, Tóth R, Honsberger A, Nagy F, Fankhauser C, Schäfer E.
    Curr Biol; 2005 Dec 06; 15(23):2125-30. PubMed ID: 16332538
    [Abstract] [Full Text] [Related]

  • 36. Functional characterization of phytochrome autophosphorylation in plant light signaling.
    Han YJ, Kim HS, Kim YM, Shin AY, Lee SS, Bhoo SH, Song PS, Kim JI.
    Plant Cell Physiol; 2010 Apr 06; 51(4):596-609. PubMed ID: 20203237
    [Abstract] [Full Text] [Related]

  • 37. Jasmonic acid enhancement of anthocyanin accumulation is dependent on phytochrome A signaling pathway under far-red light in Arabidopsis.
    Li T, Jia KP, Lian HL, Yang X, Li L, Yang HQ.
    Biochem Biophys Res Commun; 2014 Nov 07; 454(1):78-83. PubMed ID: 25450360
    [Abstract] [Full Text] [Related]

  • 38. Downstream effectors of light- and phytochrome-dependent regulation of hypocotyl elongation in Arabidopsis thaliana.
    Oh S, Warnasooriya SN, Montgomery BL.
    Plant Mol Biol; 2013 Apr 07; 81(6):627-40. PubMed ID: 23456246
    [Abstract] [Full Text] [Related]

  • 39. Phytochrome A: functional diversity and polymorphism.
    Sineshchekov VA.
    Photochem Photobiol Sci; 2004 Jun 07; 3(6):596-607. PubMed ID: 15170491
    [Abstract] [Full Text] [Related]

  • 40. Fluorescence spectroscopy and photochemistry of phytochromes A and B in wild-type, mutant and transgenic strains of Arabidopsis thaliana.
    Sineshchekov VA, Ogorodnikova OB, Devlin PF, Whitelam GC.
    J Photochem Photobiol B; 1998 Feb 07; 42(2):133-42. PubMed ID: 9540220
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.