These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
156 related items for PubMed ID: 37295383
1. Bioimaging and detecting endogenous and exogenous cyanide in foods, living cells and mice based on a turn-on mitochondria-targeted fluorescent probe. Wu H, Xu Q, Yin K, Liu Z, Xie T, Wang L, Li Y, Zhang M, Lv X, Li W, Fan S. Spectrochim Acta A Mol Biomol Spectrosc; 2023 Nov 15; 301():122957. PubMed ID: 37295383 [Abstract] [Full Text] [Related]
2. Ratiometric detection and monitoring of cyanide in biological, environmental and food samples by a novel triphenylamine-xhantane based fluorescent probe. Sert A, Erdemir S, Malkondu S. Anal Chim Acta; 2024 Sep 01; 1320():343000. PubMed ID: 39142780 [Abstract] [Full Text] [Related]
3. Aggregation-induced emission activity of sensor TBM-C1 hybrid of methoxy-triphenylamine (OMe-TPA) and dicyanovinyl for cyanide detection in aqueous THF: Mechanistic insights and potential applications. Xie T, Li Y, Zhang M, Wang L, Hu Y, Yin K, Fan S, Wu H. Spectrochim Acta A Mol Biomol Spectrosc; 2024 May 05; 312():124058. PubMed ID: 38387411 [Abstract] [Full Text] [Related]
4. Reaction-based fluorescent probe for detection of endogenous cyanide in real biological samples. Long L, Wang L, Wu Y, Gong A, Da Z, Zhang C, Han Z. Chem Asian J; 2014 Nov 05; 9(11):3291-8. PubMed ID: 25156974 [Abstract] [Full Text] [Related]
5. Quantitatively analysis and detection of CN- in three food samples by a novel nopinone-based fluorescent probe. Li M, Gao Y, Xu K, Zhang Y, Gong S, Yang Y, Xu X, Wang Z, Wang S. Food Chem; 2022 Jun 15; 379():132153. PubMed ID: 35063847 [Abstract] [Full Text] [Related]
6. A new highly selective fluorescent sensor based on a novel fluorophore for cyanide and its applications in bioimaging. Liu Y, Du JS, Qi SL, Zhu LB, Yang QB, Xu H, Li YX. Luminescence; 2021 Mar 15; 36(2):336-344. PubMed ID: 32914537 [Abstract] [Full Text] [Related]
7. Switching to a "turn-on" fluorescent probe for selective monitoring of cyanide in food samples and living systems. Wu H, Chen M, Xu Q, Zhang Y, Liu P, Li W, Fan S. Chem Commun (Camb); 2019 Dec 12; 55(100):15137-15140. PubMed ID: 31789333 [Abstract] [Full Text] [Related]
8. Dual-response near-infrared fluorescent probe for detecting cyanide and mitochondrial viscosity and its application in bioimaging. Pan W, Han L, Cao X, Shen S, Pang X, Zhu Y. Food Chem; 2023 May 01; 407():135163. PubMed ID: 36502726 [Abstract] [Full Text] [Related]
9. A colorimetric and ratiometric fluorescent probe for cyanide sensing in aqueous media and live cells. Hou L, Li F, Guo J, Zhang X, Kong X, Cui XT, Dong C, Wang Y, Shuang S. J Mater Chem B; 2019 Jul 31; 7(30):4620-4629. PubMed ID: 31364679 [Abstract] [Full Text] [Related]
10. A highly selective fluorescent and chromogenic probe for CN- detection and its applications in bioimaging. Wang Y, Wang J, Xian Q. Talanta; 2018 Dec 01; 190():487-491. PubMed ID: 30172538 [Abstract] [Full Text] [Related]
11. A novel near-infrared ratiometric fluorescent probe for cyanide and its bioimaging applications. Kang J, Huo F, Zhang Y, Chao J, Glass TE, Yin C. Spectrochim Acta A Mol Biomol Spectrosc; 2019 Feb 15; 209():95-99. PubMed ID: 30384021 [Abstract] [Full Text] [Related]
12. A Biocompatible Colorimetric Triphenylamine- Dicyanovinyl Conjugated Fluorescent Probe for Selective and Sensitive Detection of Cyanide Ion in Aqueous Media and Living Cells. Zheng ZH, Li ZK, Song LJ, Wang QW, Huang QF, Yang L. Sensors (Basel); 2017 Feb 19; 17(2):. PubMed ID: 28218723 [Abstract] [Full Text] [Related]
13. Selective visualization of cyanide in food, living cells and zebrafish by a mitochondria targeted NIR-emitting fluorescent probe. Dong Z, Liang W, Ren H, Zhang Y, Wang H, Wang Y. Spectrochim Acta A Mol Biomol Spectrosc; 2022 Oct 15; 279():121485. PubMed ID: 35696972 [Abstract] [Full Text] [Related]
14. A NIR sensor for cyanide detection and its application in cell imaging. Wu WN, Wu H, Wang Y, Zhao XL, Xu ZQ, Xu ZH, Fan YC. Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jun 15; 199():141-145. PubMed ID: 29597069 [Abstract] [Full Text] [Related]
15. A highly selective and sensitive dual-mode sensor for colorimetric and turn-on fluorescent detection of cyanide in water, agro-products and living cells. Guo Z, Niu Q, Yang Q, Li T, Chi H. Anal Chim Acta; 2019 Aug 13; 1065():113-123. PubMed ID: 31005143 [Abstract] [Full Text] [Related]
16. A Highly Selective Turn-on Fluorescent and Naked-eye Colourimetric Dual-channel Probe for Cyanide Anions Detection in Water Samples. Wu Y, Ding WM, Li J, Guo G, Zhang SZ, Jia HR, Sun YX. J Fluoresc; 2021 Mar 13; 31(2):437-446. PubMed ID: 33410088 [Abstract] [Full Text] [Related]
17. Carbazole-based mitochondria-targeted fluorescent probes for in vivo viscosity and cyanide detection in cells and zebrafish. Han LL, Pan W, He SL, Tang MY, Cheng XL, Cao XQ, Shen SL, Pang XH, Zhu Y. Bioorg Chem; 2024 Feb 13; 143():107023. PubMed ID: 38091719 [Abstract] [Full Text] [Related]
18. A simple fluorophore-imine ensemble for colorimetric and fluorescent detection of CN- and HS- in aqueous solution. Lakshmi PR, Kumar PS, Elango KP. Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar 15; 229():117974. PubMed ID: 31927478 [Abstract] [Full Text] [Related]
19. Naked-eye colorimetric and turn-on fluorescent Schiff base sensor for cyanide and aluminum (III) detection in food samples and cell imaging applications. Pundi A, Chen J, Chang CJ, Hsieh SR, Lee MC, Chou CH, Way TD. Spectrochim Acta A Mol Biomol Spectrosc; 2021 Dec 05; 262():120139. PubMed ID: 34245971 [Abstract] [Full Text] [Related]
20. A novel dual-channel chemosensor for CN- using asymmetric double-azine derivatives in aqueous media and its application in bitter almond. Pei PX, Hu JH, Chen Y, Sun Y, Qi J. Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jun 15; 181():131-136. PubMed ID: 28351819 [Abstract] [Full Text] [Related] Page: [Next] [New Search]