These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
154 related items for PubMed ID: 37305300
1. Computational Mechanistic Study of l-Aspartate Oxidase by ONIOM Method. Yildiz I. ACS Omega; 2023 Jun 06; 8(22):19963-19968. PubMed ID: 37305300 [Abstract] [Full Text] [Related]
2. Mechanistic Characterization of Escherichia coli l-Aspartate Oxidase from Kinetic Isotope Effects. Chow C, Hegde S, Blanchard JS. Biochemistry; 2017 Aug 08; 56(31):4044-4052. PubMed ID: 28700220 [Abstract] [Full Text] [Related]
3. Mechanistic study of L-6-hydroxynicotine oxidase by DFT and ONIOM methods. Yildiz I, Yildiz BS. J Mol Model; 2021 Jan 28; 27(2):53. PubMed ID: 33507404 [Abstract] [Full Text] [Related]
4. Computational Insights on the Hydride and Proton Transfer Mechanisms of D-Arginine Dehydrogenase. Yildiz I. Chemphyschem; 2023 Oct 17; 24(20):e202300431. PubMed ID: 37540527 [Abstract] [Full Text] [Related]
5. On the catalytic role of the active site residue E121 of E. coli L-aspartate oxidase. Tedeschi G, Nonnis S, Strumbo B, Cruciani G, Carosati E, Negri A. Biochimie; 2010 Oct 17; 92(10):1335-42. PubMed ID: 20600565 [Abstract] [Full Text] [Related]
7. Comparative Computational Approach To Study Enzyme Reactions Using QM and QM-MM Methods. Yildiz I, Yildiz BS, Kirmizialtin S. ACS Omega; 2018 Nov 30; 3(11):14689-14703. PubMed ID: 31458147 [Abstract] [Full Text] [Related]
8. Structure of FAD-bound L-aspartate oxidase: insight into substrate specificity and catalysis. Bossi RT, Negri A, Tedeschi G, Mattevi A. Biochemistry; 2002 Mar 05; 41(9):3018-24. PubMed ID: 11863440 [Abstract] [Full Text] [Related]
11. Evidence in support of lysine 77 and histidine 96 as acid-base catalytic residues in saccharopine dehydrogenase from Saccharomyces cerevisiae. Kumar VP, Thomas LM, Bobyk KD, Andi B, Cook PF, West AH. Biochemistry; 2012 Jan 31; 51(4):857-66. PubMed ID: 22243403 [Abstract] [Full Text] [Related]
12. Computational modeling of the direct hydride transfer mechanism for the MAO catalyzed oxidation of phenethylamine and benzylamine: ONIOM (QM/QM) calculations. Akyüz MA, Erdem SS. J Neural Transm (Vienna); 2013 Jun 31; 120(6):937-45. PubMed ID: 23619993 [Abstract] [Full Text] [Related]
13. A hydrogen bond network in the active site of Anabaena ferredoxin-NADP(+) reductase modulates its catalytic efficiency. Sánchez-Azqueta A, Herguedas B, Hurtado-Guerrero R, Hervás M, Navarro JA, Martínez-Júlvez M, Medina M. Biochim Biophys Acta; 2014 Feb 31; 1837(2):251-63. PubMed ID: 24200908 [Abstract] [Full Text] [Related]
14. Importance of a serine proximal to the C(4a) and N(5) flavin atoms for hydride transfer in choline oxidase. Yuan H, Gadda G. Biochemistry; 2011 Feb 08; 50(5):770-9. PubMed ID: 21174412 [Abstract] [Full Text] [Related]
16. Probing the active site of L-aspartate oxidase by site-directed mutagenesis: role of basic residues in fumarate reduction. Tedeschi G, Ronchi S, Simonic T, Treu C, Mattevi A, Negri A. Biochemistry; 2001 Apr 17; 40(15):4738-44. PubMed ID: 11294641 [Abstract] [Full Text] [Related]
18. Mechanism of a soluble fumarate reductase from Shewanella frigidimarina: a theoretical study. Lucas MF, Ramos MJ. J Phys Chem B; 2006 Jun 01; 110(21):10550-6. PubMed ID: 16722766 [Abstract] [Full Text] [Related]