These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
185 related items for PubMed ID: 37317697
1. High throughput miRNA sequencing and bioinformatics analysis identify the mesenchymal cell proliferation and apoptosis related miRNAs during fetal mice palate development. Lu M, Lu F, Liao C, Guo Y, Mao C, Lai Y, Chen X, Chen W. J Gene Med; 2023 Sep; 25(9):e3531. PubMed ID: 37317697 [Abstract] [Full Text] [Related]
2. [Down-regulation of miR-381-3p inhibits osteogenic differentiation of mouse embryonic palatal mesenchymal cells in 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin-induced cleft palate of fetal mice]. Jiang H, Yuan X, Fu Y. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2019 Sep 15; 33(9):1174-1180. PubMed ID: 31512462 [Abstract] [Full Text] [Related]
3. High-throughput sequencing analysis of differential microRNA expression in the process of blocking the progression of chronic atrophic gastritis to gastric cancer by Xianglian Huazhuo formula. Yuxi G, Ze LI, Nan C, Xuemei J, Jie W, Hongyu MA, Runyuan Z, Bolin LI, Yucong X, Yanru C, Qian Y. J Tradit Chin Med; 2024 Aug 15; 44(4):703-712. PubMed ID: 39066531 [Abstract] [Full Text] [Related]
4. Comprehensive analysis of lncRNA-miRNA-mRNA networks during osteogenic differentiation of bone marrow mesenchymal stem cells. Liu J, Yao Y, Huang J, Sun H, Pu Y, Tian M, Zheng M, He H, Li Z. BMC Genomics; 2022 Jun 07; 23(1):425. PubMed ID: 35672672 [Abstract] [Full Text] [Related]
5. MicroRNA-374a, -4680, and -133b suppress cell proliferation through the regulation of genes associated with human cleft palate in cultured human palate cells. Suzuki A, Li A, Gajera M, Abdallah N, Zhang M, Zhao Z, Iwata J. BMC Med Genomics; 2019 Jul 01; 12(1):93. PubMed ID: 31262291 [Abstract] [Full Text] [Related]
6. Identification of circular RNA-associated competing endogenous RNA network in the development of cleft palate. Shu X, Cheng L, Dong Z, Shu S. J Cell Biochem; 2019 Sep 01; 120(9):16062-16074. PubMed ID: 31074068 [Abstract] [Full Text] [Related]
7. Temporal and spatial expression of Hoxa-2 during murine palatogenesis. Nazarali A, Puthucode R, Leung V, Wolf L, Hao Z, Yeung J. Cell Mol Neurobiol; 2000 Jun 01; 20(3):269-90. PubMed ID: 10789828 [Abstract] [Full Text] [Related]
8. RNA-seq analysis of palatal transcriptome changes in all-trans retinoic acid-induced cleft palate of mice. Peng Y, Wang XH, Su CN, Qiao WW, Gao Q, Sun XF, Meng LY. Environ Toxicol Pharmacol; 2020 Nov 01; 80():103438. PubMed ID: 32569741 [Abstract] [Full Text] [Related]
9. Differential expression of insulin-like growth factors I and II (IGF I and II), mRNA, peptide and binding protein 1 during mouse palate development: comparison with TGF beta peptide distribution. Ferguson MW, Sharpe PM, Thomas BL, Beck F. J Anat; 1992 Oct 01; 181 ( Pt 2)(Pt 2):219-38. PubMed ID: 1284245 [Abstract] [Full Text] [Related]
10. MiR-200b is involved in Tgf-β signaling to regulate mammalian palate development. Shin JO, Lee JM, Cho KW, Kwak S, Kwon HJ, Lee MJ, Cho SW, Kim KS, Jung HS. Histochem Cell Biol; 2012 Jan 01; 137(1):67-78. PubMed ID: 22072420 [Abstract] [Full Text] [Related]
11. Spatiotemporal MicroRNA-Gene Expression Network Related to Orofacial Clefts. Yan F, Simon LM, Suzuki A, Iwaya C, Jia P, Iwata J, Zhao Z. J Dent Res; 2022 Oct 01; 101(11):1398-1407. PubMed ID: 35774010 [Abstract] [Full Text] [Related]
12. Osteogenic microenvironment affects palatal development through glycolysis. Peng X, Chen J, Wang Y, Wang X, Zhao X, Zheng X, Wang Z, Yuan D, Du J. Differentiation; 2023 Oct 01; 133():1-11. PubMed ID: 37267667 [Abstract] [Full Text] [Related]
13. Systematic analysis of palatal transcriptome to identify cleft palate genes within TGFβ3-knockout mice alleles: RNA-Seq analysis of TGFβ3 Mice. Ozturk F, Li Y, Zhu X, Guda C, Nawshad A. BMC Genomics; 2013 Feb 20; 14():113. PubMed ID: 23421592 [Abstract] [Full Text] [Related]
14. Identification of key microRNAs and their targets in exosomes of pancreatic cancer using bioinformatics analysis. Zhao X, Ren Y, Cui N, Wang X, Cui Y. Medicine (Baltimore); 2018 Sep 20; 97(39):e12632. PubMed ID: 30278585 [Abstract] [Full Text] [Related]
15. Integrated analysis identifying long non-coding RNAs (lncRNAs) for competing endogenous RNAs (ceRNAs) network-regulated palatal shelf fusion in the development of mouse cleft palate. Shu X, Dong Z, Zhang M, Shu S. Ann Transl Med; 2019 Dec 20; 7(23):762. PubMed ID: 32042778 [Abstract] [Full Text] [Related]
16. miRNA expression profiling uncovers a role of miR-302b-3p in regulating skin fibroblasts senescence. Tan J, Hu L, Yang X, Zhang X, Wei C, Lu Q, Chen Z, Li J. J Cell Biochem; 2020 Jan 20; 121(1):70-80. PubMed ID: 31074095 [Abstract] [Full Text] [Related]
17. MicroRNAs in Small Extracellular Vesicles from Amniotic Fluid and Maternal Plasma Associated with Fetal Palate Development in Mice. Zhao X, Peng X, Wang Z, Zheng X, Wang X, Wang Y, Chen J, Yuan D, Liu Y, Du J. Int J Mol Sci; 2023 Dec 06; 24(24):. PubMed ID: 38139002 [Abstract] [Full Text] [Related]
18. Study on miRNAs in Pan-Cancer of the Digestive Tract Based on the Illumina HiSeq System Data Sequencing. Lai CH, Liang XZ, Liang XY, Ma SJ, Li JG, Shi MF, Zhu X, Lan HH, Zeng JH. Biomed Res Int; 2019 Dec 06; 2019():8016120. PubMed ID: 31737678 [Abstract] [Full Text] [Related]
19. MicroRNA-27a promotes tumorigenesis in tongue squamous cell carcinoma by enhancing proliferation, migration and suppressing apoptosis. Chen H, Dong Z, Chen Y, Cui Y, Song P, Yang K. Eur Arch Otorhinolaryngol; 2021 Nov 06; 278(11):4557-4567. PubMed ID: 33912994 [Abstract] [Full Text] [Related]
20. Increased miR-200c levels disrupt palatal fusion by affecting apoptosis, cell proliferation, and cell migration. Won HJ, Won HS, Shin JO. Biochem Biophys Res Commun; 2023 Jul 05; 664():43-49. PubMed ID: 37137222 [Abstract] [Full Text] [Related] Page: [Next] [New Search]