These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


246 related items for PubMed ID: 3733765

  • 41. Comment on 'Effects of knee flexion angle on the structural properties of the rabbit femur-anterior cruciate ligament-tibia complex'.
    Grood ES, Butler DL, Noyes FR.
    J Biomech; 1988; 21(8):688-91. PubMed ID: 3170624
    [No Abstract] [Full Text] [Related]

  • 42. Acute modification of biomechanical properties of the bone-ligament insertion to rat limb unweighting.
    Vanderby R, Vailas AC, Graf BK, Thielke RJ, Ulm MJ, Kohles SS, Kunz DN.
    FASEB J; 1990 May; 4(8):2499-505. PubMed ID: 2335272
    [Abstract] [Full Text] [Related]

  • 43. Water content alters viscoelastic behaviour of the normal adolescent rabbit medial collateral ligament.
    Chimich D, Shrive N, Frank C, Marchuk L, Bray R.
    J Biomech; 1992 Aug; 25(8):831-7. PubMed ID: 1639827
    [Abstract] [Full Text] [Related]

  • 44. Distinguishing biomechanical properties of intrinsic and extrinsic human wrist ligaments.
    Nowalk MD, Logan SE.
    J Biomech Eng; 1991 Feb; 113(1):85-93. PubMed ID: 2020180
    [Abstract] [Full Text] [Related]

  • 45. Anatomical and biomechanical characteristics of human meniscofemoral ligaments.
    Kusayama T, Harner CD, Carlin GJ, Xerogeanes JW, Smith BA.
    Knee Surg Sports Traumatol Arthrosc; 1994 Feb; 2(4):234-7. PubMed ID: 8536047
    [Abstract] [Full Text] [Related]

  • 46. The healing medial collateral ligament following a combined anterior cruciate and medial collateral ligament injury--a biomechanical study in a goat model.
    Abramowitch SD, Yagi M, Tsuda E, Woo SL.
    J Orthop Res; 2003 Nov; 21(6):1124-30. PubMed ID: 14554228
    [Abstract] [Full Text] [Related]

  • 47. Strain measurement in the medial collateral ligament of the human knee: an autopsy study.
    Arms S, Boyle J, Johnson R, Pope M.
    J Biomech; 1983 Nov; 16(7):491-6. PubMed ID: 6619166
    [Abstract] [Full Text] [Related]

  • 48. Cruciate ligament prosthesis: strength, creep, and fatigue properties.
    Grood ES, Noyes FR.
    J Bone Joint Surg Am; 1976 Dec; 58(8):1083-8. PubMed ID: 1002749
    [Abstract] [Full Text] [Related]

  • 49. Computer-assisted measurements of coronal knee joint laxity in vitro are related to low-stress behavior rather than structural properties of the collateral ligaments.
    Wilson WT, Deakin AH, Wearing SC, Payne AP, Clarke JV, Picard F.
    Comput Aided Surg; 2013 Dec; 18(5-6):181-6. PubMed ID: 23697384
    [Abstract] [Full Text] [Related]

  • 50.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 51. Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading.
    Gardiner JC, Weiss JA.
    J Orthop Res; 2003 Nov; 21(6):1098-106. PubMed ID: 14554224
    [Abstract] [Full Text] [Related]

  • 52. Effect of six degrees of freedom knee kinematics on ligament length and moment arm in an intact knee model.
    Ozada N.
    Technol Health Care; 2015 Nov; 23(4):485-94. PubMed ID: 26409911
    [Abstract] [Full Text] [Related]

  • 53. Recruitment of knee joint ligaments.
    Blankevoort L, Huiskes R, de Lange A.
    J Biomech Eng; 1991 Feb; 113(1):94-103. PubMed ID: 2020181
    [Abstract] [Full Text] [Related]

  • 54. Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions.
    Noyes FR, Butler DL, Grood ES, Zernicke RF, Hefzy MS.
    J Bone Joint Surg Am; 1984 Mar; 66(3):344-52. PubMed ID: 6699049
    [Abstract] [Full Text] [Related]

  • 55. Mechanical properties of the posterolateral structures of the knee.
    LaPrade RF, Bollom TS, Wentorf FA, Wills NJ, Meister K.
    Am J Sports Med; 2005 Sep; 33(9):1386-91. PubMed ID: 16002488
    [Abstract] [Full Text] [Related]

  • 56. Ligament tension affects nuclear shape in situ: an in vitro study.
    Matyas J, Edwards P, Miniaci A, Shrive N, Wilson J, Bray R, Frank C.
    Connect Tissue Res; 1994 Sep; 31(1):45-53. PubMed ID: 15609621
    [Abstract] [Full Text] [Related]

  • 57. The strength of the anterior cruciate ligament in humans and Rhesus monkeys.
    Noyes FR, Grood ES.
    J Bone Joint Surg Am; 1976 Dec; 58(8):1074-82. PubMed ID: 1002748
    [Abstract] [Full Text] [Related]

  • 58. Human anterior and posterior cervical longitudinal ligaments possess similar tensile properties.
    Przybylski GJ, Carlin GJ, Patel PR, Woo SL.
    J Orthop Res; 1996 Nov; 14(6):1005-8. PubMed ID: 8982146
    [Abstract] [Full Text] [Related]

  • 59. The effects of spinal fixation and destabilization on the biomechanical and histologic properties of spinal ligaments. An in vivo study.
    Kotani Y, Cunningham BW, Cappuccino A, Kaneda K, McAfee PC.
    Spine (Phila Pa 1976); 1998 Mar 15; 23(6):672-82; discussion 682-3. PubMed ID: 9549789
    [Abstract] [Full Text] [Related]

  • 60. Influence of Ligament Properties on Tibiofemoral Mechanics in Walking.
    Smith CR, Lenhart RL, Kaiser J, Vignos MF, Thelen DG.
    J Knee Surg; 2016 Feb 15; 29(2):99-106. PubMed ID: 26408997
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 13.