These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


132 related items for PubMed ID: 3733923

  • 1. Solute and mobile phase contributions to retention in hydrophobic interaction chromatography of proteins.
    Fausnaugh JL, Regnier FE.
    J Chromatogr; 1986 May 30; 359():131-46. PubMed ID: 3733923
    [Abstract] [Full Text] [Related]

  • 2. [Effects of buffer salt types and non-counter ions of ion-pair reagents on the retention behavior of strongly ionized acid compounds in ion-pair reversed-phase liquid chromatography].
    Liu X, Gao W, Liang C, Qiao J, Wang K, Lian H.
    Se Pu; 2021 Sep 30; 39(9):1021-1029. PubMed ID: 34486842
    [Abstract] [Full Text] [Related]

  • 3. Interplay of hydrophobic and electrostatic interactions in biopolymer chromatography. Effect of salts on the retention of proteins.
    Melander WR, el Rassi Z, Horváth C.
    J Chromatogr; 1989 May 19; 469():3-27. PubMed ID: 2768374
    [Abstract] [Full Text] [Related]

  • 4. Solubility and binding properties of PEGylated lysozyme derivatives with increasing molecular weight on hydrophobic-interaction chromatographic resins.
    Müller E, Josic D, Schröder T, Moosmann A.
    J Chromatogr A; 2010 Jul 09; 1217(28):4696-703. PubMed ID: 20570270
    [Abstract] [Full Text] [Related]

  • 5. Chromatographic resolution of lysozyme variants.
    Fausnaugh-Pollitt J, Thevenon G, Janis L, Regnier FE.
    J Chromatogr; 1988 Jun 29; 443():221-8. PubMed ID: 3170688
    [Abstract] [Full Text] [Related]

  • 6. Wide-pore silica-based ether-bonded phases for separation of proteins by high-performance hydrophobic-interaction and size-exclusion chromatography.
    Miller NT, Feibush B, Karger BL.
    J Chromatogr; 1984 Dec 21; 316():519-36. PubMed ID: 6530426
    [Abstract] [Full Text] [Related]

  • 7. Gradient elution behavior of proteins in hydrophobic interaction chromatography with U-shaped retention factor curves.
    Creasy A, Lomino J, Barker G, Khetan A, Carta G.
    J Chromatogr A; 2018 Apr 27; 1547():53-61. PubMed ID: 29551240
    [Abstract] [Full Text] [Related]

  • 8. Retention behavior of a homologous series and positional isomers of aliphatic amino acids in hydrophilic interaction chromatography.
    Douša M, Srbek J, Stránský Z, Gibala P, Nováková L.
    J Sep Sci; 2014 Apr 27; 37(7):739-47. PubMed ID: 24488796
    [Abstract] [Full Text] [Related]

  • 9. A comprehensive study to protein retention in hydrophobic interaction chromatography.
    Baca M, De Vos J, Bruylants G, Bartik K, Liu X, Cook K, Eeltink S.
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Oct 01; 1032():182-188. PubMed ID: 27237734
    [Abstract] [Full Text] [Related]

  • 10. Resolution of proteins on a phenyl-Superose HR5/5 column and its application to examining the conformation homogeneity of refolded recombinant staphylococcal nuclease.
    Jing G, Zhou B, Liu L, Zhou J, Liu Z.
    J Chromatogr A; 1994 Nov 11; 685(1):31-7. PubMed ID: 7842144
    [Abstract] [Full Text] [Related]

  • 11. Effect of preferred binding domains on peptide retention behavior in reversed-phase chromatography: amphipathic alpha-helices.
    Zhou NE, Mant CT, Hodges RS.
    Pept Res; 1990 Nov 11; 3(1):8-20. PubMed ID: 2134049
    [Abstract] [Full Text] [Related]

  • 12. Preparation of a silica-based high-performance hydrophobic interaction chromatography stationary phase for protein separation and renaturation.
    Yang Y, Qu Q, Li W, Yuan J, Ren Y, Wang L.
    J Sep Sci; 2016 Jul 11; 39(13):2481-90. PubMed ID: 27159821
    [Abstract] [Full Text] [Related]

  • 13. High-performance hydrophobic-interaction chromatography on ether-bonded phases. Chromatographic characteristics and gradient optimization.
    Miller NT, Karger BL.
    J Chromatogr; 1985 Jun 19; 326():45-61. PubMed ID: 4030950
    [Abstract] [Full Text] [Related]

  • 14. Chromatography of proteins on hydrophobic interaction and ion-exchange chromatographic matrices: mobile phase contributions to selectivity.
    Heinitz ML, Kennedy L, Kopaciewicz W, Regnier FE.
    J Chromatogr; 1988 Jun 29; 443():173-82. PubMed ID: 3170685
    [Abstract] [Full Text] [Related]

  • 15. Salt-mediated retention of proteins in hydrophobic-interaction chromatography. Application of solvophobic theory.
    Melander WR, Corradini D, Horváth C.
    J Chromatogr; 1984 Dec 28; 317():67-85. PubMed ID: 6530455
    [Abstract] [Full Text] [Related]

  • 16. Effect of mobile phase additives on solute retention at low aqueous pH in hydrophilic interaction liquid chromatography.
    McCalley DV.
    J Chromatogr A; 2017 Feb 03; 1483():71-79. PubMed ID: 28069167
    [Abstract] [Full Text] [Related]

  • 17. Preparation of a novel dual-function strong cation exchange/hydrophobic interaction chromatography stationary phase for protein separation.
    Zhao K, Yang L, Wang X, Bai Q, Yang F, Wang F.
    Talanta; 2012 Aug 30; 98():86-94. PubMed ID: 22939132
    [Abstract] [Full Text] [Related]

  • 18. Thermal behavior of proteins in high-performance hydrophobic-interaction chromatography. On-line spectroscopic and chromatographic characterization.
    Wu SL, Benedek K, Karger BL.
    J Chromatogr; 1986 May 30; 359():3-17. PubMed ID: 3015998
    [Abstract] [Full Text] [Related]

  • 19. The retention behaviour of amino acids in hydrophilic interaction liquid chromatography on zwitterionic stationary phases.
    Wu ZY, Liu J, Shi H, Marriott PJ.
    J Sep Sci; 2013 Jul 30; 36(14):2217-22. PubMed ID: 23650211
    [Abstract] [Full Text] [Related]

  • 20. [Influences of the mobile phase constitution, salt concentration and pH value on retention characters of proteins on the metal chelate column].
    Li R, Di ZM, Chen GL.
    Se Pu; 2001 Sep 30; 19(5):385-9. PubMed ID: 12545429
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.