These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


140 related items for PubMed ID: 37352129

  • 1. Comparing the influence of explicit and implicit solvation models on site-specific thermodynamic stability of proteins.
    Cho MK, Chong SH, Ham S, Shin S.
    J Comput Chem; 2023 Sep 30; 44(25):1976-1985. PubMed ID: 37352129
    [Abstract] [Full Text] [Related]

  • 2. Free energy landscape of protein folding in water: explicit vs. implicit solvent.
    Zhou R.
    Proteins; 2003 Nov 01; 53(2):148-61. PubMed ID: 14517967
    [Abstract] [Full Text] [Related]

  • 3. Secondary structure bias in generalized Born solvent models: comparison of conformational ensembles and free energy of solvent polarization from explicit and implicit solvation.
    Roe DR, Okur A, Wickstrom L, Hornak V, Simmerling C.
    J Phys Chem B; 2007 Feb 22; 111(7):1846-57. PubMed ID: 17256983
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Connecting free energy surfaces in implicit and explicit solvent: an efficient method to compute conformational and solvation free energies.
    Deng N, Zhang BW, Levy RM.
    J Chem Theory Comput; 2015 Jun 09; 11(6):2868-78. PubMed ID: 26236174
    [Abstract] [Full Text] [Related]

  • 6. Accuracy comparison of several common implicit solvent models and their implementations in the context of protein-ligand binding.
    Katkova EV, Onufriev AV, Aguilar B, Sulimov VB.
    J Mol Graph Model; 2017 Mar 09; 72():70-80. PubMed ID: 28064081
    [Abstract] [Full Text] [Related]

  • 7. Free energies of solvation in the context of protein folding: Implications for implicit and explicit solvent models.
    Cumberworth A, Bui JM, Gsponer J.
    J Comput Chem; 2016 Mar 15; 37(7):629-40. PubMed ID: 26558440
    [Abstract] [Full Text] [Related]

  • 8. Why Computed Protein Folding Landscapes Are Sensitive to the Water Model.
    Anandakrishnan R, Izadi S, Onufriev AV.
    J Chem Theory Comput; 2019 Jan 08; 15(1):625-636. PubMed ID: 30514080
    [Abstract] [Full Text] [Related]

  • 9. Generalized Born Implicit Solvent Models for Biomolecules.
    Onufriev AV, Case DA.
    Annu Rev Biophys; 2019 May 06; 48():275-296. PubMed ID: 30857399
    [Abstract] [Full Text] [Related]

  • 10. Implicit modeling of nonpolar solvation for simulating protein folding and conformational transitions.
    Chen J, Brooks CL.
    Phys Chem Chem Phys; 2008 Jan 28; 10(4):471-81. PubMed ID: 18183310
    [Abstract] [Full Text] [Related]

  • 11. Protein-Ligand Electrostatic Binding Free Energies from Explicit and Implicit Solvation.
    Izadi S, Aguilar B, Onufriev AV.
    J Chem Theory Comput; 2015 Sep 08; 11(9):4450-9. PubMed ID: 26575935
    [Abstract] [Full Text] [Related]

  • 12. Force field influences in beta-hairpin folding simulations.
    Lwin TZ, Luo R.
    Protein Sci; 2006 Nov 08; 15(11):2642-55. PubMed ID: 17075138
    [Abstract] [Full Text] [Related]

  • 13. Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model.
    Vorobjev YN, Almagro JC, Hermans J.
    Proteins; 1998 Sep 01; 32(4):399-413. PubMed ID: 9726412
    [Abstract] [Full Text] [Related]

  • 14. Can a continuum solvent model reproduce the free energy landscape of a beta -hairpin folding in water?
    Zhou R, Berne BJ.
    Proc Natl Acad Sci U S A; 2002 Oct 01; 99(20):12777-82. PubMed ID: 12242327
    [Abstract] [Full Text] [Related]

  • 15. Benchmarking implicit solvent folding simulations of the amyloid beta(10-35) fragment.
    Kent A, Jha AK, Fitzgerald JE, Freed KF.
    J Phys Chem B; 2008 May 15; 112(19):6175-86. PubMed ID: 18348560
    [Abstract] [Full Text] [Related]

  • 16. Computational protein design is a challenge for implicit solvation models.
    Jaramillo A, Wodak SJ.
    Biophys J; 2005 Jan 15; 88(1):156-71. PubMed ID: 15377512
    [Abstract] [Full Text] [Related]

  • 17. Anti-cooperativity and cooperativity in hydrophobic interactions: Three-body free energy landscapes and comparison with implicit-solvent potential functions for proteins.
    Shimizu S, Chan HS.
    Proteins; 2002 Jul 01; 48(1):15-30. PubMed ID: 12012334
    [Abstract] [Full Text] [Related]

  • 18. Evaluating the dynamics and electrostatic interactions of folded proteins in implicit solvents.
    Hua DP, Huang H, Roy A, Post CB.
    Protein Sci; 2016 Jan 01; 25(1):204-18. PubMed ID: 26189497
    [Abstract] [Full Text] [Related]

  • 19. Comparison of volume and surface area nonpolar solvation free energy terms for implicit solvent simulations.
    Lee MS, Olson MA.
    J Chem Phys; 2013 Jul 28; 139(4):044119. PubMed ID: 23901972
    [Abstract] [Full Text] [Related]

  • 20. Solvation Thermodynamics of Solutes in Water and Ionic Liquids Using the Multiscale Solvation-Layer Interface Condition Continuum Model.
    Rahimi AM, Jamali S, Bardhan JP, Lustig SR.
    J Chem Theory Comput; 2022 Sep 13; 18(9):5539-5558. PubMed ID: 36001344
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.