These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
281 related items for PubMed ID: 37361042
1. Micrococcal nuclease sequencing of porcine sperm suggests enriched co-location between retained histones and genomic regions related to semen quality and early embryo development. Gòdia M, Lian Y, Naval-Sanchez M, Ponte I, Rodríguez-Gil JE, Sanchez A, Clop A. PeerJ; 2023; 11():e15520. PubMed ID: 37361042 [Abstract] [Full Text] [Related]
2. Nucleosomes in mammalian sperm: conveying paternal epigenetic inheritance or subject to reprogramming between generations? Gaspa-Toneu L, Peters AH. Curr Opin Genet Dev; 2023 Apr; 79():102034. PubMed ID: 36893482 [Abstract] [Full Text] [Related]
3. Genome-wide chromatin mapping with size resolution reveals a dynamic sub-nucleosomal landscape in Arabidopsis. Pass DA, Sornay E, Marchbank A, Crawford MR, Paszkiewicz K, Kent NA, Murray JAH. PLoS Genet; 2017 Sep; 13(9):e1006988. PubMed ID: 28902852 [Abstract] [Full Text] [Related]
4. Gcn5-Mediated Histone Acetylation Governs Nucleosome Dynamics in Spermiogenesis. Luense LJ, Donahue G, Lin-Shiao E, Rangel R, Weller AH, Bartolomei MS, Berger SL. Dev Cell; 2019 Dec 16; 51(6):745-758.e6. PubMed ID: 31761669 [Abstract] [Full Text] [Related]
5. Genome-wide nucleosome mapping of Plasmodium falciparum reveals histone-rich coding and histone-poor intergenic regions and chromatin remodeling of core and subtelomeric genes. Westenberger SJ, Cui L, Dharia N, Winzeler E, Cui L. BMC Genomics; 2009 Dec 16; 10():610. PubMed ID: 20015349 [Abstract] [Full Text] [Related]
6. Mapping of histone-binding sites in histone replacement-completed spermatozoa. Yoshida K, Muratani M, Araki H, Miura F, Suzuki T, Dohmae N, Katou Y, Shirahige K, Ito T, Ishii S. Nat Commun; 2018 Sep 24; 9(1):3885. PubMed ID: 30250204 [Abstract] [Full Text] [Related]
7. Re-evaluating the Localization of Sperm-Retained Histones Revealed the Modification-Dependent Accumulation in Specific Genome Regions. Yamaguchi K, Hada M, Fukuda Y, Inoue E, Makino Y, Katou Y, Shirahige K, Okada Y. Cell Rep; 2018 Jun 26; 23(13):3920-3932. PubMed ID: 29949774 [Abstract] [Full Text] [Related]
8. Subtracting the sequence bias from partially digested MNase-seq data reveals a general contribution of TFIIS to nucleosome positioning. Gutiérrez G, Millán-Zambrano G, Medina DA, Jordán-Pla A, Pérez-Ortín JE, Peñate X, Chávez S. Epigenetics Chromatin; 2017 Dec 07; 10(1):58. PubMed ID: 29212533 [Abstract] [Full Text] [Related]
9. Profiling Accessible Chromatin and Nucleosomes in the Mammalian Genome. Lim HW, Iwafuchi M. Methods Mol Biol; 2023 Dec 07; 2599():59-68. PubMed ID: 36427143 [Abstract] [Full Text] [Related]
10. Characterisation of sperm piRNAs and their correlation with semen quality traits in swine. Ablondi M, Gòdia M, Rodriguez-Gil JE, Sánchez A, Clop A. Anim Genet; 2021 Feb 07; 52(1):114-120. PubMed ID: 33226164 [Abstract] [Full Text] [Related]
11. Genome-wide analysis identifies changes in histone retention and epigenetic modifications at developmental and imprinted gene loci in the sperm of infertile men. Hammoud SS, Nix DA, Hammoud AO, Gibson M, Cairns BR, Carrell DT. Hum Reprod; 2011 Sep 07; 26(9):2558-69. PubMed ID: 21685136 [Abstract] [Full Text] [Related]
12. A novel hypothesis for histone-to-protamine transition in Bos taurus spermatozoa. Sillaste G, Kaplinski L, Meier R, Jaakma Ü, Eriste E, Salumets A. Reproduction; 2017 Mar 07; 153(3):241-251. PubMed ID: 27899719 [Abstract] [Full Text] [Related]
13. Nucleosome fragility is associated with future transcriptional response to developmental cues and stress in C. elegans. Jeffers TE, Lieb JD. Genome Res; 2017 Jan 07; 27(1):75-86. PubMed ID: 27979995 [Abstract] [Full Text] [Related]
14. Paternal poly (ADP-ribose) metabolism modulates retention of inheritable sperm histones and early embryonic gene expression. Ihara M, Meyer-Ficca ML, Leu NA, Rao S, Li F, Gregory BD, Zalenskaya IA, Schultz RM, Meyer RG. PLoS Genet; 2014 May 07; 10(5):e1004317. PubMed ID: 24810616 [Abstract] [Full Text] [Related]
16. Systemic hormonal modulation induces sperm nucleosomal imbalance in rat spermatozoa. Ankolkar M, Deshpande SS, Balasinor NH. Andrologia; 2018 Oct 14; 50(8):e13060. PubMed ID: 29920734 [Abstract] [Full Text] [Related]
17. In vivo effects of histone H3 depletion on nucleosome occupancy and position in Saccharomyces cerevisiae. Gossett AJ, Lieb JD. PLoS Genet; 2012 Oct 14; 8(6):e1002771. PubMed ID: 22737086 [Abstract] [Full Text] [Related]
18. Chromatin organization in sperm may be the major functional consequence of base composition variation in the human genome. Vavouri T, Lehner B. PLoS Genet; 2011 Apr 14; 7(4):e1002036. PubMed ID: 21490963 [Abstract] [Full Text] [Related]
19. Asymmetric nucleosomes flank promoters in the budding yeast genome. Ramachandran S, Zentner GE, Henikoff S. Genome Res; 2015 Mar 14; 25(3):381-90. PubMed ID: 25491770 [Abstract] [Full Text] [Related]
20. Genomic and proteomic dissection and characterization of the human sperm chromatin. Castillo J, Amaral A, Azpiazu R, Vavouri T, Estanyol JM, Ballescà JL, Oliva R. Mol Hum Reprod; 2014 Nov 14; 20(11):1041-53. PubMed ID: 25193639 [Abstract] [Full Text] [Related] Page: [Next] [New Search]