These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
135 related items for PubMed ID: 37390443
1. Efficiency at Maximum Power of a Carnot Quantum Information Engine. Fadler P, Friedenberger A, Lutz E. Phys Rev Lett; 2023 Jun 16; 130(24):240401. PubMed ID: 37390443 [Abstract] [Full Text] [Related]
2. Performance Analysis and Optimization for Irreversible Combined Carnot Heat Engine Working with Ideal Quantum Gases. Chen L, Meng Z, Ge Y, Wu F. Entropy (Basel); 2021 Apr 27; 23(5):. PubMed ID: 33925622 [Abstract] [Full Text] [Related]
3. Finite-time performance of a quantum heat engine with a squeezed thermal bath. Wang J, He J, Ma Y. Phys Rev E; 2019 Nov 27; 100(5-1):052126. PubMed ID: 31870038 [Abstract] [Full Text] [Related]
4. Finite-power performance of quantum heat engines in linear response. Liu Q, He J, Ma Y, Wang J. Phys Rev E; 2019 Jul 27; 100(1-1):012105. PubMed ID: 31499858 [Abstract] [Full Text] [Related]
5. Efficiency at and near maximum power of low-dissipation heat engines. Holubec V, Ryabov A. Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov 27; 92(5):052125. PubMed ID: 26651665 [Abstract] [Full Text] [Related]
6. Experimental test of power-efficiency trade-off in a finite-time Carnot cycle. Zhai RX, Cui FM, Ma YH, Sun CP, Dong H. Phys Rev E; 2023 Apr 27; 107(4):L042101. PubMed ID: 37198805 [Abstract] [Full Text] [Related]
7. Performance of a multilevel quantum heat engine of an ideal N-particle Fermi system. Wang R, Wang J, He J, Ma Y. Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug 27; 86(2 Pt 1):021133. PubMed ID: 23005748 [Abstract] [Full Text] [Related]
9. Optimal Power and Efficiency of Multi-Stage Endoreversible Quantum Carnot Heat Engine with Harmonic Oscillators at the Classical Limit. Meng Z, Chen L, Wu F. Entropy (Basel); 2020 Apr 17; 22(4):. PubMed ID: 33286231 [Abstract] [Full Text] [Related]
10. Optimal Cycles for Low-Dissipation Heat Engines. Abiuso P, Perarnau-Llobet M. Phys Rev Lett; 2020 Mar 20; 124(11):110606. PubMed ID: 32242675 [Abstract] [Full Text] [Related]
11. Universal efficiency bounds of weak-dissipative thermodynamic cycles at the maximum power output. Guo J, Wang J, Wang Y, Chen J. Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan 20; 87(1):012133. PubMed ID: 23410309 [Abstract] [Full Text] [Related]
12. Optimal low symmetric dissipation Carnot engines and refrigerators. de Tomás C, Hernández AC, Roco JM. Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan 20; 85(1 Pt 1):010104. PubMed ID: 22400500 [Abstract] [Full Text] [Related]
13. Maximum efficiency of ideal heat engines based on a small system: correction to the Carnot efficiency at the nanoscale. Quan HT. Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun 20; 89(6):062134. PubMed ID: 25019751 [Abstract] [Full Text] [Related]
14. Modeling and Performance Optimization of an Irreversible Two-Stage Combined Thermal Brownian Heat Engine. Qi C, Ding Z, Chen L, Ge Y, Feng H. Entropy (Basel); 2021 Mar 31; 23(4):. PubMed ID: 33807398 [Abstract] [Full Text] [Related]
15. Efficiency at maximum power output of linear irreversible Carnot-like heat engines. Wang Y, Tu ZC. Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan 31; 85(1 Pt 1):011127. PubMed ID: 22400532 [Abstract] [Full Text] [Related]
16. Ecological efficiency of finite-time thermodynamics: A molecular dynamics study. Rojas-Gamboa DA, Rodríguez JI, Gonzalez-Ayala J, Angulo-Brown F. Phys Rev E; 2018 Aug 31; 98(2-1):022130. PubMed ID: 30253568 [Abstract] [Full Text] [Related]
17. Achieve higher efficiency at maximum power with finite-time quantum Otto cycle. Chen JF, Sun CP, Dong H. Phys Rev E; 2019 Dec 31; 100(6-1):062140. PubMed ID: 31962481 [Abstract] [Full Text] [Related]