These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
175 related items for PubMed ID: 37391772
1. Improved estimation of aboveground biomass of regional coniferous forests integrating UAV-LiDAR strip data, Sentinel-1 and Sentinel-2 imageries. Wang Y, Jia X, Chai G, Lei L, Zhang X. Plant Methods; 2023 Jun 30; 19(1):65. PubMed ID: 37391772 [Abstract] [Full Text] [Related]
2. Improving aboveground biomass maps of tropical dry forests by integrating LiDAR, ALOS PALSAR, climate and field data. Hernández-Stefanoni JL, Castillo-Santiago MÁ, Mas JF, Wheeler CE, Andres-Mauricio J, Tun-Dzul F, George-Chacón SP, Reyes-Palomeque G, Castellanos-Basto B, Vaca R, Dupuy JM. Carbon Balance Manag; 2020 Jul 29; 15(1):15. PubMed ID: 32729000 [Abstract] [Full Text] [Related]
3. Estimation of forest aboveground biomass and uncertainties by integration of field measurements, airborne LiDAR, and SAR and optical satellite data in Mexico. Urbazaev M, Thiel C, Cremer F, Dubayah R, Migliavacca M, Reichstein M, Schmullius C. Carbon Balance Manag; 2018 Feb 21; 13(1):5. PubMed ID: 29468474 [Abstract] [Full Text] [Related]
4. Estimation of coniferous forest aboveground biomass with aggregated airborne small-footprint LiDAR full-waveforms. Qin H, Wang C, Xi X, Tian J, Zhou G. Opt Express; 2017 Aug 07; 25(16):A851-A869. PubMed ID: 29041100 [Abstract] [Full Text] [Related]
5. Exploring UAS-lidar as a sampling tool for satellite-based AGB estimations in the Miombo woodland of Zambia. Shamaoma H, Chirwa PW, Zekeng JC, Ramoelo A, Hudak AT, Handavu F, Syampungani S. Plant Methods; 2024 Jun 08; 20(1):88. PubMed ID: 38849856 [Abstract] [Full Text] [Related]
6. Integrating spaceborne LiDAR and Sentinel-2 images to estimate forest aboveground biomass in Northern China. Jiang F, Deng M, Tang J, Fu L, Sun H. Carbon Balance Manag; 2022 Sep 01; 17(1):12. PubMed ID: 36048352 [Abstract] [Full Text] [Related]
7. Identification of tree species based on the fusion of UAV hyperspectral image and LiDAR data in a coniferous and broad-leaved mixed forest in Northeast China. Zhong H, Lin W, Liu H, Ma N, Liu K, Cao R, Wang T, Ren Z. Front Plant Sci; 2022 Sep 01; 13():964769. PubMed ID: 36212338 [Abstract] [Full Text] [Related]
8. UAV and Satellite Synergies for Mapping Grassland Aboveground Biomass in Hulunbuir Meadow Steppe. Zhu X, Chen X, Ma L, Liu W. Plants (Basel); 2024 Mar 31; 13(7):. PubMed ID: 38611535 [Abstract] [Full Text] [Related]
9. Estimating the aboveground biomass of coniferous forest in Northeast China using spectral variables, land surface temperature and soil moisture. Jiang F, Kutia M, Ma K, Chen S, Long J, Sun H. Sci Total Environ; 2021 Sep 01; 785():147335. PubMed ID: 33933773 [Abstract] [Full Text] [Related]
10. Top Canopy Height and Stem Size Variation Enhance Aboveground Biomass across Spatial Scales in Seasonal Tropical Forests. Sun Z, Sonsuthi A, Jucker T, Ali A, Cao M, Liu F, Cao G, Hu T, Ma Q, Guo Q, Lin L. Plants (Basel); 2023 Mar 16; 12(6):. PubMed ID: 36987031 [Abstract] [Full Text] [Related]
11. Total and component forest aboveground biomass inversion via LiDAR-derived features and machine learning algorithms. Ma J, Zhang W, Ji Y, Huang J, Huang G, Wang L. Front Plant Sci; 2023 Mar 16; 14():1258521. PubMed ID: 37954998 [Abstract] [Full Text] [Related]
12. Evaluating spatial coverage of data on the aboveground biomass in undisturbed forests in the Brazilian Amazon. Tejada G, Görgens EB, Espírito-Santo FDB, Cantinho RZ, Ometto JP. Carbon Balance Manag; 2019 Sep 03; 14(1):11. PubMed ID: 31482475 [Abstract] [Full Text] [Related]
13. Impact of data model and point density on aboveground forest biomass estimation from airborne LiDAR. Garcia M, Saatchi S, Ferraz A, Silva CA, Ustin S, Koltunov A, Balzter H. Carbon Balance Manag; 2017 Dec 03; 12(1):4. PubMed ID: 28413848 [Abstract] [Full Text] [Related]
14. [Estimating individual tree aboveground biomass of the mid-subtropical forest using airborne LiDAR technology]. Liu F, Tan C, Lei PF. Ying Yong Sheng Tai Xue Bao; 2014 Nov 03; 25(11):3229-36. PubMed ID: 25898621 [Abstract] [Full Text] [Related]
15. Forest biomass variation in Southernmost Brazil: the impact of Araucaria trees. Rosenfield MF, Souza AF. Rev Biol Trop; 2014 Mar 03; 62(1):359-72. PubMed ID: 24912365 [Abstract] [Full Text] [Related]
16. Integration of high-resolution optical and SAR satellite remote sensing datasets for aboveground biomass estimation in subtropical pine forest, Pakistan. Akhtar AM, Qazi WA, Ahmad SR, Gilani H, Mahmood SA, Rasool A. Environ Monit Assess; 2020 Aug 17; 192(9):584. PubMed ID: 32808098 [Abstract] [Full Text] [Related]
17. UAV hyperspectral combined with LiDAR to estimate chlorophyll content at the stand and individual tree scales. Yang T, Yu Y, Yang XG, DU HX. Ying Yong Sheng Tai Xue Bao; 2023 Aug 17; 34(8):2101-2112. PubMed ID: 37681374 [Abstract] [Full Text] [Related]
18. Forest degradation and biomass loss along the Chocó region of Colombia. Meyer V, Saatchi S, Ferraz A, Xu L, Duque A, García M, Chave J. Carbon Balance Manag; 2019 Mar 23; 14(1):2. PubMed ID: 30904964 [Abstract] [Full Text] [Related]
19. Estimating the Aboveground Carbon Density of Coniferous Forests by Combining Airborne LiDAR and Allometry Models at Plot Level. Hao H, Li W, Zhao X, Chang Q, Zhao P. Front Plant Sci; 2019 Mar 23; 10():917. PubMed ID: 31354780 [Abstract] [Full Text] [Related]
20. Estimation of Aboveground Biomass in Agroforestry Systems over Three Climatic Regions in West Africa Using Sentinel-1, Sentinel-2, ALOS, and GEDI Data. Kanmegne Tamga D, Latifi H, Ullmann T, Baumhauer R, Bayala J, Thiel M. Sensors (Basel); 2022 Dec 29; 23(1):. PubMed ID: 36616947 [Abstract] [Full Text] [Related] Page: [Next] [New Search]