These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Deciphering the Structural Network That Confers Stability to High Internal Phase Pickering Emulsions by Cross-Linked Soy Protein Microgels and Their In Vitro Digestion Profiles. Wen J, Zhang Y, Jin H, Sui X, Jiang L. J Agric Food Chem; 2020 Sep 09; 68(36):9796-9803. PubMed ID: 32786850 [Abstract] [Full Text] [Related]
4. High internal phase Pickering emulsions stabilized by a cod protein-chitosan nanocomplex for astaxanthin delivery. Zhang L, Zhou C, Na X, Chen Y, Tan M. Food Funct; 2021 Nov 29; 12(23):11872-11882. PubMed ID: 34735562 [Abstract] [Full Text] [Related]
5. Development of protein-polyphenol particles to stabilize high internal phase Pickering emulsions by polyphenols' structure. Chen Y, Yao M, Peng S, Fang Y, Wan L, Shang W, Xiang D, Zhang W. Food Chem; 2023 Dec 01; 428():136773. PubMed ID: 37423104 [Abstract] [Full Text] [Related]
6. Water-in-oil high internal phase Pickering emulsions formed by spontaneous interfacial hydrolysis of monomer oil. Guan X, Sheng Y, Jiang H, Binks BP, Ngai T. J Colloid Interface Sci; 2022 Oct 01; 623():476-486. PubMed ID: 35597017 [Abstract] [Full Text] [Related]
7. All-natural oil-in-water high internal phase Pickering emulsions featuring interfacial bilayer stabilization. Tao S, Guan X, Li Y, Jiang H, Gong S, Ngai T. J Colloid Interface Sci; 2022 Feb 01; 607(Pt 2):1491-1499. PubMed ID: 34587529 [Abstract] [Full Text] [Related]
8. Formation, structure and stability of high internal phase Pickering emulsions stabilized by BSPI-C3G covalent complexes. Cui X, Ma M, Xie Y, Yang Y, Li Q, Sun S, Ma W. Food Chem X; 2022 Dec 30; 16():100455. PubMed ID: 36203951 [Abstract] [Full Text] [Related]
10. Fabrication and Stability Improvement of Monoglyceride Oleogel/Polyglycerol Polyricinoleate-Stabilized W/O High Internal Phase Pickering Emulsions. Zhang Y, Xu J, Gong J, Li Y. Foods; 2024 Jun 20; 13(12):. PubMed ID: 38928884 [Abstract] [Full Text] [Related]
11. Understanding the structure, interfacial properties, and digestion fate of high internal phase Pickering emulsions stabilized by food-grade coacervates: Tracing the dynamic transition from coacervates to complexes. Wang L, Liu M, Guo P, Zhang H, Jiang L, Xia N, Zheng L, Cui Q, Hua S. Food Chem; 2023 Jul 15; 414():135718. PubMed ID: 36827783 [Abstract] [Full Text] [Related]
12. Construction of high internal phase Pickering emulsions stabilized by bamboo fungus protein gels with the effect of pH. Zhang M, Zhou L, Yang F, Yao J, Ma Y, Liu J. Food Chem; 2022 Feb 01; 369():130954. PubMed ID: 34469839 [Abstract] [Full Text] [Related]
13. Relationship between the interfacial properties of lactoferrin-(-)-epigallocatechin-3-gallate covalent complex and the macroscopic properties of emulsions. Sun Y, Zhao M, Liu Z, Shi H, Zhang X, Zhao Y, Ma Z, Yu G, Xia G, Shen X. Food Chem; 2024 Dec 01; 460(Pt 2):140536. PubMed ID: 39089037 [Abstract] [Full Text] [Related]
15. The influence of unique interfacial networks based on egg white proteins for the stabilization of high internal phase Pickering emulsions: Physical stability and free fatty acid release kinetics. Zhang T, Li S, Yang M, Li Y, Ma S, Zhang H, Li L, Liu X, Liu J, Du Z. Food Chem; 2024 Jun 01; 442():138448. PubMed ID: 38245983 [Abstract] [Full Text] [Related]
17. High Internal-Phase Pickering Emulsions Stabilized by Xanthan Gum/Lysozyme Nanoparticles: Rheological and Microstructural Perspective. Xu W, Li Z, Sun H, Zheng S, Li H, Luo D, Li Y, Wang M, Wang Y. Front Nutr; 2021 Jun 01; 8():744234. PubMed ID: 35071292 [Abstract] [Full Text] [Related]
18. Tumor microenvironment-responsive, high internal phase Pickering emulsions stabilized by lignin/chitosan oligosaccharide particles for synergistic cancer therapy. Chen K, Qian Y, Wang C, Yang D, Qiu X, Binks BP. J Colloid Interface Sci; 2021 Jun 01; 591():352-362. PubMed ID: 33618293 [Abstract] [Full Text] [Related]