These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
193 related items for PubMed ID: 37405751
21. Fluorescence enhancement of silver nanoparticle hybrid probes and ultrasensitive detection of IgE. Li H, Qiang W, Vuki M, Xu D, Chen HY. Anal Chem; 2011 Dec 01; 83(23):8945-52. PubMed ID: 21988285 [Abstract] [Full Text] [Related]
22. Coupling of silver nanoparticle-conjugated fluorescent dyes into optical fiber modes for enhanced signal-to-noise ratio. Thi Tran NH, Phan TB, Nguyen TT, Ju H. Biosens Bioelectron; 2021 Mar 15; 176():112900. PubMed ID: 33388687 [Abstract] [Full Text] [Related]
23. Mechanisms of silver nanoparticle-induced toxicity and important role of autophagy. Mao BH, Tsai JC, Chen CW, Yan SJ, Wang YJ. Nanotoxicology; 2016 Oct 15; 10(8):1021-40. PubMed ID: 27240148 [Abstract] [Full Text] [Related]
24. Response of platelets to silver nanoparticles designed with different surface functionalization. Milić M, Cvetić Ž, Bendelja K, Vuković B, Galić E, Ćurlin M, Dobrošević B, Jurak Begonja A, Vinković Vrček I. J Inorg Biochem; 2021 Nov 15; 224():111565. PubMed ID: 34411938 [Abstract] [Full Text] [Related]
25. Silver nanoparticles impede phorbol myristate acetate-induced monocyte-macrophage differentiation and autophagy. Xu Y, Wang L, Bai R, Zhang T, Chen C. Nanoscale; 2015 Oct 14; 7(38):16100-9. PubMed ID: 26372376 [Abstract] [Full Text] [Related]
26. Effects of silver nanoparticles on the interactions of neuron- and glia-like cells: Toxicity, uptake mechanisms, and lysosomal tracking. Hsiao IL, Hsieh YK, Chuang CY, Wang CF, Huang YJ. Environ Toxicol; 2017 Jun 14; 32(6):1742-1753. PubMed ID: 28181394 [Abstract] [Full Text] [Related]
27. Effect of media composition on bioavailability and toxicity of silver and silver nanoparticles in fish intestinal cells (RTgutGC). Minghetti M, Schirmer K. Nanotoxicology; 2016 Dec 14; 10(10):1526-1534. PubMed ID: 27689691 [Abstract] [Full Text] [Related]
28. BLOC1S1/GCN5L1/BORCS1 is a critical mediator for the initiation of autolysosomal tubulation. Wu K, Seylani A, Wu J, Wu X, Bleck CKE, Sack MN. Autophagy; 2021 Nov 14; 17(11):3707-3724. PubMed ID: 33629936 [Abstract] [Full Text] [Related]
29. Silver Nanoparticles Covered with pH-Sensitive Camptothecin-Loaded Polymer Prodrugs: Switchable Fluorescence "Off" or "On" and Drug Delivery Dynamics in Living Cells. Qiu L, Li JW, Hong CY, Pan CY. ACS Appl Mater Interfaces; 2017 Nov 22; 9(46):40887-40897. PubMed ID: 29088537 [Abstract] [Full Text] [Related]
30. Comparing ex vivo and in vitro translocation of silver nanoparticles and ions through human nasal epithelium. Falconer JL, Alt JA, Grainger DW. Biomaterials; 2018 Jul 22; 171():97-106. PubMed ID: 29684679 [Abstract] [Full Text] [Related]
31. Physicochemical properties and cytotoxicity of cysteine-functionalized silver nanoparticles. Oćwieja M, Barbasz A, Walas S, Roman M, Paluszkiewicz C. Colloids Surf B Biointerfaces; 2017 Dec 01; 160():429-437. PubMed ID: 28987952 [Abstract] [Full Text] [Related]
32. A molecular mechanism to regulate lysosome motility for lysosome positioning and tubulation. Li X, Rydzewski N, Hider A, Zhang X, Yang J, Wang W, Gao Q, Cheng X, Xu H. Nat Cell Biol; 2016 Apr 01; 18(4):404-17. PubMed ID: 26950892 [Abstract] [Full Text] [Related]
33. Ceria nanoparticles stabilized by organic surface coatings activate the lysosome-autophagy system and enhance autophagic clearance. Song W, Soo Lee S, Savini M, Popp L, Colvin VL, Segatori L. ACS Nano; 2014 Oct 28; 8(10):10328-42. PubMed ID: 25315655 [Abstract] [Full Text] [Related]
34. Effects of Systematic Variation in Size and Surface Coating of Silver Nanoparticles on Their In Vitro Toxicity to Macrophage RAW 264.7 Cells. Makama S, Kloet SK, Piella J, van den Berg H, de Ruijter NCA, Puntes VF, Rietjens IMCM, van den Brink NW. Toxicol Sci; 2018 Mar 01; 162(1):79-88. PubMed ID: 29106689 [Abstract] [Full Text] [Related]
35. Two-Phase Bactericidal Mechanism of Silver Nanoparticles against Burkholderia pseudomallei. Siritongsuk P, Hongsing N, Thammawithan S, Daduang S, Klaynongsruang S, Tuanyok A, Patramanon R. PLoS One; 2016 Mar 01; 11(12):e0168098. PubMed ID: 27977746 [Abstract] [Full Text] [Related]
36. Enhanced activity of lysozyme-AgNP conjugate with synergic antibacterial effect without damaging the catalytic site of lysozyme. Ernest V, Gajalakshmi S, Mukherjee A, Chandrasekaran N. Artif Cells Nanomed Biotechnol; 2014 Oct 01; 42(5):336-43. PubMed ID: 23863117 [Abstract] [Full Text] [Related]
37. Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Loeschner K, Hadrup N, Qvortrup K, Larsen A, Gao X, Vogel U, Mortensen A, Lam HR, Larsen EH. Part Fibre Toxicol; 2011 Jun 01; 8():18. PubMed ID: 21631937 [Abstract] [Full Text] [Related]
38. Effective killing of bacteria under blue-light irradiation promoted by green synthesized silver nanoparticles loaded on reduced graphene oxide sheets. Caires CSA, Farias LAS, Gomes LE, Pinto BP, Gonçalves DA, Zagonel LF, Nascimento VA, Alves DCB, Colbeck I, Whitby C, Caires ARL, Wender H. Mater Sci Eng C Mater Biol Appl; 2020 Aug 01; 113():110984. PubMed ID: 32487400 [Abstract] [Full Text] [Related]
39. Size and dose dependent effects of silver nanoparticle exposure on intestinal permeability in an in vitro model of the human gut epithelium. Williams KM, Gokulan K, Cerniglia CE, Khare S. J Nanobiotechnology; 2016 Jul 28; 14(1):62. PubMed ID: 27465730 [Abstract] [Full Text] [Related]
40. Peptide-capped functionalized Ag/Au bimetal nanoclusters with enhanced red fluorescence for lysosome-targeted imaging of hypochlorite in living cells. Jia M, Mi W, Guo S, Yang QZ, Jin Y, Shao N. Talanta; 2020 Aug 15; 216():120926. PubMed ID: 32456892 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]