These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


182 related items for PubMed ID: 37423104

  • 1. Development of protein-polyphenol particles to stabilize high internal phase Pickering emulsions by polyphenols' structure.
    Chen Y, Yao M, Peng S, Fang Y, Wan L, Shang W, Xiang D, Zhang W.
    Food Chem; 2023 Dec 01; 428():136773. PubMed ID: 37423104
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Understanding the structure, interfacial properties, and digestion fate of high internal phase Pickering emulsions stabilized by food-grade coacervates: Tracing the dynamic transition from coacervates to complexes.
    Wang L, Liu M, Guo P, Zhang H, Jiang L, Xia N, Zheng L, Cui Q, Hua S.
    Food Chem; 2023 Jul 15; 414():135718. PubMed ID: 36827783
    [Abstract] [Full Text] [Related]

  • 5. Pickering Emulsion Gels Prepared by Hydrogen-Bonded Zein/Tannic Acid Complex Colloidal Particles.
    Zou Y, Guo J, Yin SW, Wang JM, Yang XQ.
    J Agric Food Chem; 2015 Aug 26; 63(33):7405-14. PubMed ID: 26226053
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. All-natural oil-in-water high internal phase Pickering emulsions featuring interfacial bilayer stabilization.
    Tao S, Guan X, Li Y, Jiang H, Gong S, Ngai T.
    J Colloid Interface Sci; 2022 Feb 26; 607(Pt 2):1491-1499. PubMed ID: 34587529
    [Abstract] [Full Text] [Related]

  • 8. Influence of carboxymethyl cellulose on the stability, rheology, and curcumin bioaccessibility of high internal phase Pickering emulsions.
    Wang W, Ji S, Xia Q.
    Carbohydr Polym; 2024 Jun 15; 334():122041. PubMed ID: 38553238
    [Abstract] [Full Text] [Related]

  • 9. Study on stabilized mechanism of high internal phase Pickering emulsions based on commercial yeast proteins: Modulating the characteristics of Pickering particle via sonication.
    Cheng T, Zhang G, Sun F, Guo Y, Ramakrishna R, Zhou L, Guo Z, Wang Z.
    Ultrason Sonochem; 2024 Mar 15; 104():106843. PubMed ID: 38471387
    [Abstract] [Full Text] [Related]

  • 10. Water-in-oil Pickering emulsions stabilized by an interfacial complex of water-insoluble polyphenol crystals and protein.
    Zembyla M, Murray BS, Radford SJ, Sarkar A.
    J Colloid Interface Sci; 2019 Jul 15; 548():88-99. PubMed ID: 30981966
    [Abstract] [Full Text] [Related]

  • 11. Self-assembled colloidal complexes of polyphenol-gelatin and their stabilizing effects on emulsions.
    Huang Y, Li A, Qiu C, Teng Y, Wang Y.
    Food Funct; 2017 Sep 20; 8(9):3145-3154. PubMed ID: 28776625
    [Abstract] [Full Text] [Related]

  • 12. Development and characterization of high internal phase pickering emulsions stabilized by heat-induced electrostatic complexes particles: Growth nucleation mechanism and interface architecture.
    Wang L, Xiao B, Guo Q, Guo P, Zhang H, Chi Y, Xia N, Jiang L, Cui Q.
    Food Chem; 2023 Feb 15; 402():134512. PubMed ID: 36303394
    [Abstract] [Full Text] [Related]

  • 13. Effects of environmental stimuli on the physicochemical and rheological properties of chitosan-macroalgal polyphenol stabilized Pickering emulsion.
    Meng W, Sun H, Mu T, Garcia-Vaquero M.
    Int J Biol Macromol; 2023 Feb 01; 227():1245-1257. PubMed ID: 36473531
    [Abstract] [Full Text] [Related]

  • 14. Relationship between the interfacial properties of lactoferrin-(-)-epigallocatechin-3-gallate covalent complex and the macroscopic properties of emulsions.
    Sun Y, Zhao M, Liu Z, Shi H, Zhang X, Zhao Y, Ma Z, Yu G, Xia G, Shen X.
    Food Chem; 2024 Dec 01; 460(Pt 2):140536. PubMed ID: 39089037
    [Abstract] [Full Text] [Related]

  • 15. Preparation and Application of High Internal Phase Pickering Emulsion Gels Stabilized by Starch Nanocrystal/Tannic Acid Complex Particles.
    Jin H, Li C, Sun Y, Zhao B, Li Y.
    Gels; 2024 May 15; 10(5):. PubMed ID: 38786252
    [Abstract] [Full Text] [Related]

  • 16. Preparation and characterization of lactoferrin-polyphenol conjugate with stabilizing effects on fish oil high internal phase Pickering emulsions.
    Sun Y, Zhao M, Liu Z, Shi H, Zhang X, Zhao Y, Ma Z, Yu G, Xia G, Shen X.
    Food Chem X; 2024 Dec 30; 24():101836. PubMed ID: 39380573
    [Abstract] [Full Text] [Related]

  • 17. Gelatin-Based Nanocomplex-Stabilized Pickering Emulsions: Regulating Droplet Size and Wettability through Assembly with Glucomannan.
    Jin W, Zhu J, Jiang Y, Shao P, Li B, Huang Q.
    J Agric Food Chem; 2017 Feb 22; 65(7):1401-1409. PubMed ID: 28132504
    [Abstract] [Full Text] [Related]

  • 18. Intestine-targeted high internal phase Pickering emulsion formulated using silkworm pupa protein via ultrasonic treatment.
    Jiang H, Wang X, Han L, Tang C, He J, Min D.
    Int J Biol Macromol; 2023 Aug 15; 246():125620. PubMed ID: 37392913
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Deciphering the Structural Network That Confers Stability to High Internal Phase Pickering Emulsions by Cross-Linked Soy Protein Microgels and Their In Vitro Digestion Profiles.
    Wen J, Zhang Y, Jin H, Sui X, Jiang L.
    J Agric Food Chem; 2020 Sep 09; 68(36):9796-9803. PubMed ID: 32786850
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.