These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Fabrication of flexible SERS substrate based on Au nanostars and PDMS for sensitive detection of Thiram residue in apple juice. Zhang Y, Wang Y, Liu A, Liu S. Spectrochim Acta A Mol Biomol Spectrosc; 2023 Sep 05; 297():122721. PubMed ID: 37054572 [Abstract] [Full Text] [Related]
7. Rapid nondestructive detection of mixed pesticides residues on fruit surface using SERS combined with self-modeling mixture analysis method. Hu B, Sun DW, Pu H, Wei Q. Talanta; 2020 Sep 01; 217():120998. PubMed ID: 32498854 [Abstract] [Full Text] [Related]
8. Quantification of antibiotics in food by octahedral gold-silver nanocages-based SERS sensor coupling multivariate calibration. Li H, Sheng W, Hassan MM, Geng W, Chen Q. Spectrochim Acta A Mol Biomol Spectrosc; 2024 Nov 05; 320():124595. PubMed ID: 38850828 [Abstract] [Full Text] [Related]
10. 4-Mercaptobenzoic Acid Labeled Gold-Silver-Alloy-Embedded Silica Nanoparticles as an Internal Standard Containing Nanostructures for Sensitive Quantitative Thiram Detection. Pham XH, Hahm E, Huynh KH, Son BS, Kim HM, Jeong DH, Jun BH. Int J Mol Sci; 2019 Sep 29; 20(19):. PubMed ID: 31569479 [Abstract] [Full Text] [Related]
11. Synthesis of polyhedral gold nanostars as surface-enhanced Raman spectroscopy substrates for measurement of thiram in peach juice. Sun L, Yu Z, Lin M. Analyst; 2019 Aug 05; 144(16):4820-4825. PubMed ID: 31282496 [Abstract] [Full Text] [Related]
12. Gap controlled self-assembly Au@Ag@Au NPs for SERS assay of thiram. Zhang J, Wu C, Yuan R, Huang JA, Yang X. Food Chem; 2022 Oct 01; 390():133164. PubMed ID: 35551030 [Abstract] [Full Text] [Related]
13. Rapid simultaneous detection of multi-pesticide residues on apple using SERS technique. Zhang Y, Wang Z, Wu L, Pei Y, Chen P, Cui Y. Analyst; 2014 Oct 21; 139(20):5148-54. PubMed ID: 25105174 [Abstract] [Full Text] [Related]
15. Core-shell Au@ZIF-67-based pollutant monitoring of thiram and carbendazim pesticides. Tran HN, Nguyen NB, Ly NH, Joo SW, Vasseghian Y. Environ Pollut; 2023 Jan 15; 317():120775. PubMed ID: 36455771 [Abstract] [Full Text] [Related]
16. Detection of thiram on fruit surfaces and in juices with minimum sample pretreatment via a bendable and reusable substrate for surface-enhanced Raman scattering. Wu J, Huang Y, Miao J, Lai K. J Sci Food Agric; 2022 Nov 15; 102(14):6211-6219. PubMed ID: 35478166 [Abstract] [Full Text] [Related]
17. Plasmonic 3D Semiconductor-Metal Nanopore Arrays for Reliable Surface-Enhanced Raman Scattering Detection and In-Site Catalytic Reaction Monitoring. Zhang M, Chen T, Liu Y, Zhang J, Sun H, Yang J, Zhu J, Liu J, Wu Y. ACS Sens; 2018 Nov 26; 3(11):2446-2454. PubMed ID: 30335972 [Abstract] [Full Text] [Related]
18. Detection and quantification of carbendazim in Oolong tea by surface-enhanced Raman spectroscopy and gold nanoparticle substrates. Chen X, Lin M, Sun L, Xu T, Lai K, Huang M, Lin H. Food Chem; 2019 Sep 30; 293():271-277. PubMed ID: 31151611 [Abstract] [Full Text] [Related]
19. Sensitive and handy detection of pesticide residue on fruit surface based on single microsphere surface-enhanced Raman spectroscopy technique. Feng Y, Wang X, Chang Y, Guo J, Wang C. J Colloid Interface Sci; 2022 Dec 15; 628(Pt B):116-128. PubMed ID: 35987151 [Abstract] [Full Text] [Related]
20. High-performance homogeneous carboxymethylcellulose-stabilized Au@Ag NRs-CMC surface-enhanced Raman scattering chip for thiram detection in fruits. Hu B, Sun DW, Pu H, Huang Z. Food Chem; 2023 Jun 30; 412():135332. PubMed ID: 36774690 [Abstract] [Full Text] [Related] Page: [Next] [New Search]