These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
178 related items for PubMed ID: 37429100
1. Interaural frequency mismatch jointly modulates neural brainstem binaural interaction and behavioral interaural time difference sensitivity in humans. Sammeth CA, Brown AD, Greene NT, Tollin DJ. Hear Res; 2023 Sep 15; 437():108839. PubMed ID: 37429100 [Abstract] [Full Text] [Related]
2. Normative Study of the Binaural Interaction Component of the Human Auditory Brainstem Response as a Function of Interaural Time Differences. Sammeth CA, Greene NT, Brown AD, Tollin DJ. Ear Hear; 2021 Sep 15; 42(3):629-643. PubMed ID: 33141776 [Abstract] [Full Text] [Related]
3. Aging effects on the binaural interaction component of the auditory brainstem response in the Mongolian gerbil: Effects of interaural time and level differences. Laumen G, Tollin DJ, Beutelmann R, Klump GM. Hear Res; 2016 Jul 15; 337():46-58. PubMed ID: 27173973 [Abstract] [Full Text] [Related]
4. A Comparison of Two Objective Measures of Binaural Processing: The Interaural Phase Modulation Following Response and the Binaural Interaction Component. Haywood NR, Undurraga JA, Marquardt T, McAlpine D. Trends Hear; 2015 Dec 30; 19():. PubMed ID: 26721925 [Abstract] [Full Text] [Related]
5. Between-ear sound frequency disparity modulates a brain stem biomarker of binaural hearing. Brown AD, Anbuhl KL, Gilmer JI, Tollin DJ. J Neurophysiol; 2019 Sep 01; 122(3):1110-1122. PubMed ID: 31314646 [Abstract] [Full Text] [Related]
6. Binaural interaction in the auditory brainstem response: a normative study. Van Yper LN, Vermeire K, De Vel EF, Battmer RD, Dhooge IJ. Clin Neurophysiol; 2015 Apr 01; 126(4):772-9. PubMed ID: 25240247 [Abstract] [Full Text] [Related]
7. Envelope coding in the lateral superior olive. II. Characteristic delays and comparison with responses in the medial superior olive. Joris PX. J Neurophysiol; 1996 Oct 01; 76(4):2137-56. PubMed ID: 8899590 [Abstract] [Full Text] [Related]
8. Effects of interaural time and level differences on the binaural interaction component of the 80 Hz auditory steady-state response. Zhang F, Boettcher FA. J Am Acad Audiol; 2008 Jan 01; 19(1):82-94. PubMed ID: 18637411 [Abstract] [Full Text] [Related]
9. Binaural interaction in human auditory brainstem and middle-latency responses affected by sound frequency band, lateralization predictability, and attended modality. Ikeda K, Campbell TA. Hear Res; 2024 Oct 01; 452():109089. PubMed ID: 39137721 [Abstract] [Full Text] [Related]
10. Preliminary results of the relationship between the binaural interaction component of the electrically evoked auditory brainstem response and interaural pitch comparisons in bilateral cochlear implant recipients. He S, Brown CJ, Abbas PJ. Ear Hear; 2012 Oct 01; 33(1):57-68. PubMed ID: 21730858 [Abstract] [Full Text] [Related]
11. Effects of interaural pitch matching and auditory image centering on binaural sensitivity in cochlear implant users. Kan A, Litovsky RY, Goupell MJ. Ear Hear; 2015 Oct 01; 36(3):e62-8. PubMed ID: 25565660 [Abstract] [Full Text] [Related]
12. Effects of interaural frequency difference on binaural fusion evidenced by electrophysiological versus psychoacoustical measures. Zhou J, Durrant JD. J Acoust Soc Am; 2003 Sep 01; 114(3):1508-15. PubMed ID: 14514204 [Abstract] [Full Text] [Related]
13. Suitability of the Binaural Interaction Component for Interaural Electrode Pairing of Bilateral Cochlear Implants. Hu H, Kollmeier B, Dietz M. Adv Exp Med Biol; 2016 Sep 01; 894():57-64. PubMed ID: 27080646 [Abstract] [Full Text] [Related]
14. Evidence for separate processing in the human brainstem of interaural intensity and temporal disparities for sound lateralization. Pratt H, Polyakov A, Kontorovich L. Hear Res; 1997 Jun 01; 108(1-2):1-8. PubMed ID: 9213116 [Abstract] [Full Text] [Related]
15. Comparison of Interaural Electrode Pairing Methods for Bilateral Cochlear Implants. Hu H, Dietz M. Trends Hear; 2015 Dec 01; 19():. PubMed ID: 26631108 [Abstract] [Full Text] [Related]
16. Neural Processing of Acoustic and Electric Interaural Time Differences in Normal-Hearing Gerbils. Vollmer M. J Neurosci; 2018 Aug 01; 38(31):6949-6966. PubMed ID: 29959238 [Abstract] [Full Text] [Related]
17. Rate dependent neural responses of interaural-time-difference cues in fine-structure and envelope. Hu H, Ewert SD, Kollmeier B, Vickers D. PeerJ; 2024 Aug 01; 12():e17104. PubMed ID: 38680894 [Abstract] [Full Text] [Related]
18. The influence of externalization and spatial cues on the generation of auditory brainstem responses and middle latency responses. Junius D, Riedel H, Kollmeier B. Hear Res; 2007 Mar 01; 225(1-2):91-104. PubMed ID: 17270375 [Abstract] [Full Text] [Related]
19. Investigating the optimal stimulus to evoke the binaural interaction component of the auditory brainstem response. Owrutsky ZL, Peacock J, Tollin DJ. Hear Res; 2023 Dec 01; 440():108896. PubMed ID: 37924633 [Abstract] [Full Text] [Related]
20. Test-Retest Reliability of the Binaural Interaction Component of the Auditory Brainstem Response. Ferber AT, Benichoux V, Tollin DJ. Ear Hear; 2016 Dec 01; 37(5):e291-301. PubMed ID: 27232069 [Abstract] [Full Text] [Related] Page: [Next] [New Search]