These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
259 related items for PubMed ID: 37449559
1. Structural basis for binding of the renal carcinoma target hypoxia-inducible factor 2α to prolyl hydroxylase domain 2. Figg WD, Fiorini G, Chowdhury R, Nakashima Y, Tumber A, McDonough MA, Schofield CJ. Proteins; 2023 Nov; 91(11):1510-1524. PubMed ID: 37449559 [Abstract] [Full Text] [Related]
2. Prolyl hydroxylase 2 dependent and Von-Hippel-Lindau independent degradation of Hypoxia-inducible factor 1 and 2 alpha by selenium in clear cell renal cell carcinoma leads to tumor growth inhibition. Chintala S, Najrana T, Toth K, Cao S, Durrani FA, Pili R, Rustum YM. BMC Cancer; 2012 Jul 17; 12():293. PubMed ID: 22804960 [Abstract] [Full Text] [Related]
3. Structural basis for oxygen degradation domain selectivity of the HIF prolyl hydroxylases. Chowdhury R, Leung IK, Tian YM, Abboud MI, Ge W, Domene C, Cantrelle FX, Landrieu I, Hardy AP, Pugh CW, Ratcliffe PJ, Claridge TD, Schofield CJ. Nat Commun; 2016 Aug 26; 7():12673. PubMed ID: 27561929 [Abstract] [Full Text] [Related]
4. Structural basis for binding of hypoxia-inducible factor to the oxygen-sensing prolyl hydroxylases. Chowdhury R, McDonough MA, Mecinović J, Loenarz C, Flashman E, Hewitson KS, Domene C, Schofield CJ. Structure; 2009 Jul 15; 17(7):981-9. PubMed ID: 19604478 [Abstract] [Full Text] [Related]
5. Decreased prolyl hydroxylase 3 mRNA expression in oncocytomas compared with clear cell renal cell carcinoma. Kampantais S, Kounatidis I, Kotoula V, Vakalopoulos I, Gkagkalidis K, Dimitriadis G. Int J Biol Markers; 2020 Dec 15; 35(4):80-86. PubMed ID: 33118406 [Abstract] [Full Text] [Related]
6. PHD1-3 oxygen sensors in vivo-lessons learned from gene deletions. Jucht AE, Scholz CC. Pflugers Arch; 2024 Sep 15; 476(9):1307-1337. PubMed ID: 38509356 [Abstract] [Full Text] [Related]
7. Oxygen sensing in Drosophila: multiple isoforms of the prolyl hydroxylase fatiga have different capacity to regulate HIFalpha/Sima. Acevedo JM, Centanin L, Dekanty A, Wappner P. PLoS One; 2010 Aug 25; 5(8):e12390. PubMed ID: 20811646 [Abstract] [Full Text] [Related]
8. Assays to Study Hypoxia-Inducible Factor Prolyl Hydroxylase Domain 2 (PHD2), a Key Human Oxygen Sensing Protein. Chan YY, Mbenza NM, Chan MC, Leung IKH. Methods Mol Biol; 2023 Aug 25; 2648():187-206. PubMed ID: 37039992 [Abstract] [Full Text] [Related]
9. Hypoxia-inducible factor-1 (HIF-1) promotes its degradation by induction of HIF-alpha-prolyl-4-hydroxylases. Marxsen JH, Stengel P, Doege K, Heikkinen P, Jokilehto T, Wagner T, Jelkmann W, Jaakkola P, Metzen E. Biochem J; 2004 Aug 01; 381(Pt 3):761-7. PubMed ID: 15104534 [Abstract] [Full Text] [Related]
12. Human oxygen sensing may have origins in prokaryotic elongation factor Tu prolyl-hydroxylation. Scotti JS, Leung IK, Ge W, Bentley MA, Paps J, Kramer HB, Lee J, Aik W, Choi H, Paulsen SM, Bowman LA, Loik ND, Horita S, Ho CH, Kershaw NJ, Tang CM, Claridge TD, Preston GM, McDonough MA, Schofield CJ. Proc Natl Acad Sci U S A; 2014 Sep 16; 111(37):13331-6. PubMed ID: 25197067 [Abstract] [Full Text] [Related]
13. Complement C1q is hydroxylated by collagen prolyl 4 hydroxylase and is sensitive to off-target inhibition by prolyl hydroxylase domain inhibitors that stabilize hypoxia-inducible factor. Kiriakidis S, Hoer SS, Burrows N, Biddlecome G, Khan MN, Thinnes CC, Schofield CJ, Rogers N, Botto M, Paleolog E, Maxwell PH. Kidney Int; 2017 Oct 16; 92(4):900-908. PubMed ID: 28506759 [Abstract] [Full Text] [Related]
14. Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. Appelhoff RJ, Tian YM, Raval RR, Turley H, Harris AL, Pugh CW, Ratcliffe PJ, Gleadle JM. J Biol Chem; 2004 Sep 10; 279(37):38458-65. PubMed ID: 15247232 [Abstract] [Full Text] [Related]
15. Inhibition of a viral prolyl hydroxylase. Langley GW, Abboud MI, Lohans CT, Schofield CJ. Bioorg Med Chem; 2019 Jun 15; 27(12):2405-2412. PubMed ID: 30737136 [Abstract] [Full Text] [Related]
16. Hypoxia Signaling Cascade for Erythropoietin Production in Hepatocytes. Tojo Y, Sekine H, Hirano I, Pan X, Souma T, Tsujita T, Kawaguchi S, Takeda N, Takeda K, Fong GH, Dan T, Ichinose M, Miyata T, Yamamoto M, Suzuki N. Mol Cell Biol; 2015 Aug 15; 35(15):2658-72. PubMed ID: 26012551 [Abstract] [Full Text] [Related]
17. Distinct subpopulations of FOXD1 stroma-derived cells regulate renal erythropoietin. Kobayashi H, Liu Q, Binns TC, Urrutia AA, Davidoff O, Kapitsinou PP, Pfaff AS, Olauson H, Wernerson A, Fogo AB, Fong GH, Gross KW, Haase VH. J Clin Invest; 2016 May 02; 126(5):1926-38. PubMed ID: 27088801 [Abstract] [Full Text] [Related]
18. Regulation of adult erythropoiesis by prolyl hydroxylase domain proteins. Takeda K, Aguila HL, Parikh NS, Li X, Lamothe K, Duan LJ, Takeda H, Lee FS, Fong GH. Blood; 2008 Mar 15; 111(6):3229-35. PubMed ID: 18056838 [Abstract] [Full Text] [Related]
19. Biochemical and biophysical analyses of hypoxia sensing prolyl hydroxylases from Dictyostelium discoideum and Toxoplasma gondii. Liu T, Abboud MI, Chowdhury R, Tumber A, Hardy AP, Lippl K, Lohans CT, Pires E, Wickens J, McDonough MA, West CM, Schofield CJ. J Biol Chem; 2020 Dec 04; 295(49):16545-16561. PubMed ID: 32934009 [Abstract] [Full Text] [Related]