These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
199 related items for PubMed ID: 37450468
21. Occurrence of Traditional and Alternative Fecal Indicators in Tropical Urban Environments under Different Land Use Patterns. Saeidi N, Gu X, Tran NH, Goh SG, Kitajima M, Kushmaro A, Schmitz BW, Gin KY. Appl Environ Microbiol; 2018 Jul 15; 84(14):. PubMed ID: 29776926 [Abstract] [Full Text] [Related]
22. Field-based evaluation of a male-specific (F+) RNA coliphage concentration method. Chandler JC, Pérez-Méndez A, Paar J, Doolittle MM, Bisha B, Goodridge LD. J Virol Methods; 2017 Jan 15; 239():9-16. PubMed ID: 27777078 [Abstract] [Full Text] [Related]
23. Applicability of crAssphage, pepper mild mottle virus, and tobacco mosaic virus as indicators of reduction of enteric viruses during wastewater treatment. Tandukar S, Sherchan SP, Haramoto E. Sci Rep; 2020 Feb 27; 10(1):3616. PubMed ID: 32107444 [Abstract] [Full Text] [Related]
24. Pepper mild mottle virus as an indicator of fecal pollution. Rosario K, Symonds EM, Sinigalliano C, Stewart J, Breitbart M. Appl Environ Microbiol; 2009 Nov 27; 75(22):7261-7. PubMed ID: 19767474 [Abstract] [Full Text] [Related]
25. Elucidation of fecal inputs into the River Tagus catchment (Portugal) using source-specific mitochondrial DNA, HAdV, and phage markers. Monteiro S, Ebdon J, Santos R, Taylor H. Sci Total Environ; 2021 Aug 20; 783():147086. PubMed ID: 34088114 [Abstract] [Full Text] [Related]
26. Quantification of human enteric viruses as alternative indicators of fecal pollution to evaluate wastewater treatment processes. Garcia A, Le T, Jankowski P, Yanaç K, Yuan Q, Uyaguari-Diaz MI. PeerJ; 2022 Aug 20; 10():e12957. PubMed ID: 35186509 [Abstract] [Full Text] [Related]
27. Development and evaluation of a culture-independent method for source determination of fecal wastes in surface and storm waters using reverse transcriptase-PCR detection of FRNA coliphage genogroup gene sequences. Paar J, Doolittle MM, Varma M, Siefring S, Oshima K, Haugland RA. J Microbiol Methods; 2015 May 20; 112():28-35. PubMed ID: 25744574 [Abstract] [Full Text] [Related]
28. Relationships among microbial indicators of fecal pollution, microbial source tracking markers, and pathogens in Costa Rican coastal waters. González-Fernández A, Symonds EM, Gallard-Gongora JF, Mull B, Lukasik JO, Rivera Navarro P, Badilla Aguilar A, Peraud J, Brown ML, Mora Alvarado D, Breitbart M, Cairns MR, Harwood VJ. Water Res; 2021 Jan 01; 188():116507. PubMed ID: 33126000 [Abstract] [Full Text] [Related]
29. Applicability of pepper mild mottle virus and cucumber green mottle mosaic virus as process indicators of enteric virus removal by membrane processes at a potable reuse facility. Yasui M, Iso H, Torii S, Matsui Y, Katayama H. Water Res; 2021 Nov 01; 206():117735. PubMed ID: 34673461 [Abstract] [Full Text] [Related]
30. Male-specific RNA coliphages detected by plaque assay and RT-PCR in tropical river waters and animal fecal matter. Yee SY, Fong NY, Fong GT, Tak OJ, Hui GT, Su Ming Y. Int J Environ Health Res; 2006 Feb 01; 16(1):59-68. PubMed ID: 16507481 [Abstract] [Full Text] [Related]
31. Quantitative Assessment of Microbial Pathogens and Indicators of Wastewater Treatment Performance for Safe and Sustainable Water Reuse in India. Chowdhari S, Rana S, Rana S, Morrison CM, Abney SE, Singh R, Gurian PL, Kumar A, Kumar A, Betancourt WQ, Vivekanandan P. Microbiol Spectr; 2022 Dec 21; 10(6):e0172022. PubMed ID: 36314905 [Abstract] [Full Text] [Related]
32. Recovery of Nucleic Acids of Enteric Viruses and Host-Specific Bacteroidales from Groundwater by Using an Adsorption-Direct Extraction Method. Miura T, Takino H, Gima A, Haramoto E, Akiba M. Appl Environ Microbiol; 2021 Aug 26; 87(18):e0071021. PubMed ID: 34232739 [Abstract] [Full Text] [Related]
33. Persistence of emerging viral fecal indicators in large-scale freshwater mesocosms. Greaves J, Stone D, Wu Z, Bibby K. Water Res X; 2020 Dec 01; 9():100067. PubMed ID: 32995735 [Abstract] [Full Text] [Related]
34. Integrating Metagenomic and Bayesian Analyses to Evaluate the Performance and Confidence of CrAssphage as an Indicator for Tracking Human Sewage Contamination in China. Chen H, Liu C, Li Y, Teng Y. Environ Sci Technol; 2021 Apr 20; 55(8):4992-5000. PubMed ID: 33715349 [Abstract] [Full Text] [Related]
35. Interlaboratory accuracy and precision among results of three sewage-associated marker genes in urban environmental estuarine waters and freshwater streams. Ahmed W, Payyappat S, Cassidy M, Harrison N, Besley C. Sci Total Environ; 2020 Nov 01; 741():140071. PubMed ID: 32887015 [Abstract] [Full Text] [Related]
36. Evaluation of crAssphage as a human-specific microbial source-tracking marker in the Republic of Korea. Nam SJ, Hu WS, Koo OK. Environ Monit Assess; 2022 Apr 15; 194(5):367. PubMed ID: 35426058 [Abstract] [Full Text] [Related]
37. Sequence variation among group III F-specific RNA coliphages from water samples and swine lagoons. Stewart JR, Vinjé J, Oudejans SJ, Scott GI, Sobsey MD. Appl Environ Microbiol; 2006 Feb 15; 72(2):1226-30. PubMed ID: 16461670 [Abstract] [Full Text] [Related]