These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


201 related items for PubMed ID: 37462427

  • 1. Cation-dependent assembly of hexagonal DNA origami lattices on SiO2 surfaces.
    Pothineni BK, Grundmeier G, Keller A.
    Nanoscale; 2023 Aug 10; 15(31):12894-12906. PubMed ID: 37462427
    [Abstract] [Full Text] [Related]

  • 2. Dynamics of DNA Origami Lattice Formation at Solid-Liquid Interfaces.
    Kielar C, Ramakrishnan S, Fricke S, Grundmeier G, Keller A.
    ACS Appl Mater Interfaces; 2018 Dec 26; 10(51):44844-44853. PubMed ID: 30501167
    [Abstract] [Full Text] [Related]

  • 3. Self-assembly of two-dimensional DNA origami lattices using cation-controlled surface diffusion.
    Woo S, Rothemund PW.
    Nat Commun; 2014 Sep 10; 5():4889. PubMed ID: 25205175
    [Abstract] [Full Text] [Related]

  • 4. Scaling Up DNA Origami Lattice Assembly.
    Xin Y, Shen B, Kostiainen MA, Grundmeier G, Castro M, Linko V, Keller A.
    Chemistry; 2021 Jun 10; 27(33):8564-8571. PubMed ID: 33780583
    [Abstract] [Full Text] [Related]

  • 5. Dynamics of lattice defects in mixed DNA origami monolayers.
    Xin Y, Ji X, Grundmeier G, Keller A.
    Nanoscale; 2020 May 07; 12(17):9733-9743. PubMed ID: 32324191
    [Abstract] [Full Text] [Related]

  • 6. Surface Assembly of DNA Origami on a Lipid Bilayer Observed Using High-Speed Atomic Force Microscopy.
    Endo M.
    Molecules; 2022 Jun 30; 27(13):. PubMed ID: 35807467
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures.
    Suzuki Y, Endo M, Sugiyama H.
    Nat Commun; 2015 Aug 27; 6():8052. PubMed ID: 26310995
    [Abstract] [Full Text] [Related]

  • 10. Surface-assisted large-scale ordering of DNA origami tiles.
    Aghebat Rafat A, Pirzer T, Scheible MB, Kostina A, Simmel FC.
    Angew Chem Int Ed Engl; 2014 Jul 14; 53(29):7665-8. PubMed ID: 24894973
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Dielectrophoretic trapping of multilayer DNA origami nanostructures and DNA origami-induced local destruction of silicon dioxide.
    Shen B, Linko V, Dietz H, Toppari JJ.
    Electrophoresis; 2015 Jan 14; 36(2):255-62. PubMed ID: 25225147
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Self-Assembly of DNA Nanostructures in Different Cations.
    Rodriguez A, Gandavadi D, Mathivanan J, Song T, Madhanagopal BR, Talbot H, Sheng J, Wang X, Chandrasekaran AR.
    Small; 2023 Sep 14; 19(39):e2300040. PubMed ID: 37264756
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. DNA Origami for Silicon Patterning.
    Thomas G, Diagne CT, Baillin X, Chevolleau T, Charvolin T, Tiron R.
    ACS Appl Mater Interfaces; 2020 Aug 12; 12(32):36799-36809. PubMed ID: 32678567
    [Abstract] [Full Text] [Related]

  • 20. Preparation of Mica and Silicon Substrates for DNA Origami Analysis and Experimentation.
    Pillers MA, Shute R, Farchone A, Linder KP, Doerfler R, Gavin C, Goss V, Lieberman M.
    J Vis Exp; 2015 Jul 23; (101):e52972. PubMed ID: 26274888
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.