These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


197 related items for PubMed ID: 37480686

  • 1. Size-exclusion chromatography for the characterization of urinary extracellular vesicles.
    Park S, Jalaludin I, Hwang H, Ko M, Adelipour M, Hwan M, Cho N, Kim KK, Lubman DM, Kim J.
    J Chromatogr B Analyt Technol Biomed Life Sci; 2023 Aug 01; 1228():123828. PubMed ID: 37480686
    [Abstract] [Full Text] [Related]

  • 2. The importance of extracellular vesicle purification for downstream analysis: A comparison of differential centrifugation and size exclusion chromatography for helminth pathogens.
    Davis CN, Phillips H, Tomes JJ, Swain MT, Wilkinson TJ, Brophy PM, Morphew RM.
    PLoS Negl Trop Dis; 2019 Feb 01; 13(2):e0007191. PubMed ID: 30811394
    [Abstract] [Full Text] [Related]

  • 3. An Isolation System to Collect High Quality and Purity Extracellular Vesicles from Serum.
    Yang J, Gao X, Xing X, Huang H, Tang Q, Ma S, Xu X, Liang C, Li M, Liao L, Tian W.
    Int J Nanomedicine; 2021 Feb 01; 16():6681-6692. PubMed ID: 34616151
    [Abstract] [Full Text] [Related]

  • 4. Isolation of Extracellular Vesicles (EVs) Using Benchtop Size Exclusion Chromatography (SEC) Columns.
    Reshi QUA, Hasan MM, Dissanayake K, Fazeli A.
    Methods Mol Biol; 2021 Feb 01; 2273():201-206. PubMed ID: 33604855
    [Abstract] [Full Text] [Related]

  • 5. Mass-Spectrometry Based Proteome Comparison of Extracellular Vesicle Isolation Methods: Comparison of ME-kit, Size-Exclusion Chromatography, and High-Speed Centrifugation.
    Askeland A, Borup A, Østergaard O, Olsen JV, Lund SM, Christiansen G, Kristensen SR, Heegaard NHH, Pedersen S.
    Biomedicines; 2020 Jul 25; 8(8):. PubMed ID: 32722497
    [Abstract] [Full Text] [Related]

  • 6. Improving the Purity of Extracellular Vesicles by Removal of Lipoproteins from Size Exclusion Chromatography- and Ultracentrifugation-Processed Samples Using Glycosaminoglycan-Functionalized Magnetic Beads.
    Chou CY, Chiang PC, Li CC, Chang JW, Lu PH, Hsu WF, Chang LC, Hsu JL, Wu MS, Wo AM.
    ACS Appl Mater Interfaces; 2024 Aug 28; 16(34):44386-44398. PubMed ID: 39149774
    [Abstract] [Full Text] [Related]

  • 7. Characterization and function of extracellular vesicles in a canine mammary tumour cell line: Ultracentrifugation versus size exclusion chromatography.
    Moccia V, Sammarco A, Ferro S, Cavicchioli L, Zappulli V.
    Vet Comp Oncol; 2023 Mar 28; 21(1):36-44. PubMed ID: 36111535
    [Abstract] [Full Text] [Related]

  • 8. The Separation and Characterization of Extracellular Vesicles from Medium Conditioned by Bovine Embryos.
    Pavani KC, Lin X, Hamacher J, Broeck WVD, Couck L, Peelman L, Hendrix A, Van Soom A.
    Int J Mol Sci; 2020 Apr 22; 21(8):. PubMed ID: 32331414
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Higher functionality of extracellular vesicles isolated using size-exclusion chromatography compared to ultracentrifugation.
    Mol EA, Goumans MJ, Doevendans PA, Sluijter JPG, Vader P.
    Nanomedicine; 2017 Aug 22; 13(6):2061-2065. PubMed ID: 28365418
    [Abstract] [Full Text] [Related]

  • 11. Size-Exclusion Chromatography-based isolation minimally alters Extracellular Vesicles' characteristics compared to precipitating agents.
    Gámez-Valero A, Monguió-Tortajada M, Carreras-Planella L, Franquesa Ml, Beyer K, Borràs FE.
    Sci Rep; 2016 Sep 19; 6():33641. PubMed ID: 27640641
    [Abstract] [Full Text] [Related]

  • 12. Combination of precipitation and size exclusion chromatography as an effective method for exosome like extracellular vesicle isolation from pericardial fluids.
    Chandrasekera D, Shah R, van Hout I, De Jonge W, Bunton R, Parry D, Davis P, Katare R.
    Nanotheranostics; 2023 Sep 19; 7(4):345-352. PubMed ID: 37151803
    [Abstract] [Full Text] [Related]

  • 13. Density-based lipoprotein depletion improves extracellular vesicle isolation and functional analysis.
    Merij LB, da Silva LR, Palhinha L, Gomes MT, Dib PRB, Martins-Gonçalves R, Toledo-Quiroga K, Raposo-Nunes MA, Andrade FB, de Toledo Martins S, Nascimento ALR, Rocha VN, Alves LR, Bozza PT, de Oliveira Trugilho MR, Hottz ED.
    J Thromb Haemost; 2024 May 19; 22(5):1372-1388. PubMed ID: 38278418
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Isolation and characterization of urine microvesicles from prostate cancer patients: different approaches, different visions.
    García-Flores M, Sánchez-López CM, Ramírez-Calvo M, Fernández-Serra A, Marcilla A, López-Guerrero JA.
    BMC Urol; 2021 Sep 27; 21(1):137. PubMed ID: 34579682
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. An optimized method for plasma extracellular vesicles isolation to exclude the copresence of biological drugs and plasma proteins which impairs their biological characterization.
    Arntz OJ, Pieters BCH, van Lent PLEM, Koenders MI, van der Kraan PM, van de Loo FAJ.
    PLoS One; 2020 Sep 27; 15(7):e0236508. PubMed ID: 32726333
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.