These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
223 related items for PubMed ID: 37488039
1. PDK inhibition promotes glucose utilization, reduces hepatic lipid deposition, and improves oxidative stress in largemouth bass (Micropterus salmoides) by increasing pyruvate oxidative phosphorylation. Jin AH, Qian YF, Ren J, Wang JG, Qiao F, Zhang ML, Du ZY, Luo Y. Fish Shellfish Immunol; 2023 Sep; 140():108969. PubMed ID: 37488039 [Abstract] [Full Text] [Related]
2. Inhibition of pyruvate dehydrogenase kinase improves carbohydrate utilization in Nile tilapia by regulating PDK2/4-PDHE1α axis and insulin sensitivity. Luo Y, Zhou W, Li R, Limbu SM, Qiao F, Chen L, Zhang M, Du ZY. Anim Nutr; 2022 Dec; 11():25-37. PubMed ID: 36016966 [Abstract] [Full Text] [Related]
3. High dietary lipid level alters the growth, hepatic metabolism enzyme, and anti-oxidative capacity in juvenile largemouth bass Micropterus salmoides. Zhou YL, Guo JL, Tang RJ, Ma HJ, Chen YJ, Lin SM. Fish Physiol Biochem; 2020 Feb; 46(1):125-134. PubMed ID: 31522360 [Abstract] [Full Text] [Related]
4. Effects of High Starch and Supplementation of an Olive Extract on the Growth Performance, Hepatic Antioxidant Capacity and Lipid Metabolism of Largemouth Bass (Micropterus salmoides). Liang X, Chen P, Wu X, Xing S, Morais S, He M, Gu X, Xue M. Antioxidants (Basel); 2022 Mar 17; 11(3):. PubMed ID: 35326228 [Abstract] [Full Text] [Related]
5. Comprehensive assessment of detoxification mechanisms of hydrolysis fish peptides in largemouth bass (Micropterus salmoides) under copper exposure: Tracing from bioaccumulation, oxidative stress, lipid deposition to metabolomics. Wu D, Wang L, Fan Z, Li J, Tang S, Zhao C, Zhang H, Zheng X. Ecotoxicol Environ Saf; 2023 Oct 01; 264():115418. PubMed ID: 37651792 [Abstract] [Full Text] [Related]
6. Effect of high dietary starch levels on growth, hepatic glucose metabolism, oxidative status and immune response of juvenile largemouth bass, Micropterus salmoides. Lin SM, Shi CM, Mu MM, Chen YJ, Luo L. Fish Shellfish Immunol; 2018 Jul 01; 78():121-126. PubMed ID: 29684600 [Abstract] [Full Text] [Related]
7. High dietary wheat starch negatively regulated growth performance, glucose and lipid metabolisms, liver and intestinal health of juvenile largemouth bass, Micropterus salmoides. Zhang BY, Yang HL, Nie QJ, Zhang Y, Cai GH, Sun YZ. Fish Physiol Biochem; 2024 Apr 01; 50(2):635-651. PubMed ID: 38165563 [Abstract] [Full Text] [Related]
8. Linseed oil can decrease liver fat deposition and improve antioxidant ability of juvenile largemouth bass, Micropterus salmoides. Shi CM, Zhao H, Zhai XL, Chen YJ, Lin SM. Fish Physiol Biochem; 2019 Oct 01; 45(5):1513-1521. PubMed ID: 30945042 [Abstract] [Full Text] [Related]
9. Pleurotus eryngii root waste and soybean meal co-fermented protein improved the growth, immunity, liver and intestinal health of largemouth bass (Micropterus salmoides). Xu JM, Gao WR, Liang P, Cai GH, Yang HL, Lin JB, Sun YZ. Fish Shellfish Immunol; 2024 Jun 01; 149():109551. PubMed ID: 38599363 [Abstract] [Full Text] [Related]
10. Optimal dietary zinc inclusion improved growth performance, serum antioxidant capacity, immune status, and liver lipid and glucose metabolism of largemouth bass (Micropterus salmoides). Gu D, Mao X, Abouel Azm FR, Zhu W, Huang T, Wang X, Ni X, Zhou M, Shen J, Tan Q. Fish Shellfish Immunol; 2024 Jan 01; 144():109233. PubMed ID: 37984614 [Abstract] [Full Text] [Related]
11. Dietary butylated hydroxytoluene improves lipid metabolism, antioxidant and anti-apoptotic response of largemouth bass (Micropterus salmoides). Yu LL, Yu HH, Liang XF, Li N, Wang X, Li FH, Wu XF, Zheng YH, Xue M, Liang XF. Fish Shellfish Immunol; 2018 Jan 01; 72():220-229. PubMed ID: 29108969 [Abstract] [Full Text] [Related]
12. Yeast culture improved the growth performance, liver function, intestinal barrier and microbiota of juvenile largemouth bass (Micropterus salmoides) fed high-starch diet. Feng Z, Zhong Y, He G, Sun H, Chen Y, Zhou W, Lin S. Fish Shellfish Immunol; 2022 Jan 01; 120():706-715. PubMed ID: 34954371 [Abstract] [Full Text] [Related]
13. Dietary Supplementation of Astaxanthin Improved the Growth Performance, Antioxidant Ability and Immune Response of Juvenile Largemouth Bass (Micropterus salmoides) Fed High-Fat Diet. Xie S, Yin P, Tian L, Yu Y, Liu Y, Niu J. Mar Drugs; 2020 Dec 15; 18(12):. PubMed ID: 33333811 [Abstract] [Full Text] [Related]
14. Dietary lipid sources affect growth performance, lipid deposition, antioxidant capacity and inflammatory response of largemouth bass (Micropterus salmoides). Gong Y, Chen S, Wang Z, Li W, Xie R, Zhang H, Huang X, Chen N, Li S. Fish Shellfish Immunol; 2024 Jul 15; 150():109635. PubMed ID: 38754648 [Abstract] [Full Text] [Related]
15. Effects of a Phytogenic Supplement Containing Olive By-Product and Green Tea Extracts on Growth Performance, Lipid Metabolism, and Hepatic Antioxidant Capacity in Largemouth Bass (Micropterus salmoides) Fed a High Soybean Meal Diet. Liu J, Xue M, Morais S, He M, Wang H, Wang J, Pastor JJ, Gonçalves RA, Liang X. Antioxidants (Basel); 2022 Dec 07; 11(12):. PubMed ID: 36552623 [Abstract] [Full Text] [Related]
16. Acute hypoxia changes the mode of glucose and lipid utilization in the liver of the largemouth bass (Micropterus salmoides). Sun JL, Zhao LL, Wu H, Liu Q, Liao L, Luo J, Lian WQ, Cui C, Jin L, Ma JD, Li MZ, Yang S. Sci Total Environ; 2020 Apr 15; 713():135157. PubMed ID: 31836235 [Abstract] [Full Text] [Related]
17. The preferential utilization of hepatic glycogen as energy substrates in largemouth bass (Micropterus salmoides) under short-term starvation. Zhang N, Wang X, Han Z, Gong Y, Huang X, Chen N, Li S. Fish Physiol Biochem; 2024 Apr 15; 50(2):785-796. PubMed ID: 38108936 [Abstract] [Full Text] [Related]
18. Dietary sodium acetate and sodium butyrate improve high-carbohydrate diet utilization by regulating gut microbiota, liver lipid metabolism, oxidative stress, and inflammation in largemouth bass (Micropterus salmoides). Liu Q, Cheng L, Wang M, Shen L, Zhang C, Mu J, Hu Y, Yang Y, He K, Yan H, Zhao L, Yang S. J Anim Sci Biotechnol; 2024 Apr 03; 15(1):50. PubMed ID: 38566217 [Abstract] [Full Text] [Related]
19. Optimum feeding frequency of juvenile largemouth bass (Micropterus salmoides) reared in in-pond raceway recirculating culture system. Wang Y, Xie S, Nie Z, Li Q, Sun Y, Shao N, Gao J, Hu J, Xu P, Xu G. Fish Physiol Biochem; 2020 Dec 03; 46(6):2197-2212. PubMed ID: 32865717 [Abstract] [Full Text] [Related]
20. Effects of Yellow Mealworm (Tenebrio molitor) on Growth Performance, Hepatic Health and Digestibility in Juvenile Largemouth Bass (Micropterus salmoides). Chen H, Yu J, Ran X, Wu J, Chen Y, Tan B, Lin S. Animals (Basel); 2023 Apr 18; 13(8):. PubMed ID: 37106952 [Abstract] [Full Text] [Related] Page: [Next] [New Search]