These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


205 related items for PubMed ID: 37499430

  • 1. Real-time lumbosacral joint loading estimation in exoskeleton-assisted lifting conditions via electromyography-driven musculoskeletal models.
    Moya-Esteban A, Durandau G, van der Kooij H, Sartori M.
    J Biomech; 2023 Aug; 157():111727. PubMed ID: 37499430
    [Abstract] [Full Text] [Related]

  • 2. Robust estimation of lumbar joint forces in symmetric and asymmetric lifting tasks via large-scale electromyography-driven musculoskeletal models.
    Moya-Esteban A, van der Kooij H, Sartori M.
    J Biomech; 2022 Nov; 144():111307. PubMed ID: 36191432
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Model-Based Comparison of Passive and Active Assistance Designs in an Occupational Upper Limb Exoskeleton for Overhead Lifting.
    Zhou X, Zheng L.
    IISE Trans Occup Ergon Hum Factors; 2021 Nov; 9(3-4):167-185. PubMed ID: 34254566
    [Abstract] [Full Text] [Related]

  • 5. The effect of control strategies for an active back-support exoskeleton on spine loading and kinematics during lifting.
    Koopman AS, Toxiri S, Power V, Kingma I, van Dieën JH, Ortiz J, de Looze MP.
    J Biomech; 2019 Jun 25; 91():14-22. PubMed ID: 31122661
    [Abstract] [Full Text] [Related]

  • 6. A Passive Back-Support Exoskeleton for Manual Materials Handling: Reduction of Low Back Loading and Metabolic Effort during Repetitive Lifting.
    Schmalz T, Colienne A, Bywater E, Fritzsche L, Gärtner C, Bellmann M, Reimer S, Ernst M.
    IISE Trans Occup Ergon Hum Factors; 2022 Jun 25; 10(1):7-20. PubMed ID: 34763618
    [Abstract] [Full Text] [Related]

  • 7. Effects of a passive back exoskeleton on the mechanical loading of the low-back during symmetric lifting.
    Koopman AS, Kingma I, de Looze MP, van Dieën JH.
    J Biomech; 2020 Mar 26; 102():109486. PubMed ID: 31718821
    [Abstract] [Full Text] [Related]

  • 8. Estimating lumbar spine loading when using back-support exoskeletons in lifting tasks.
    Madinei S, Nussbaum MA.
    J Biomech; 2023 Jan 26; 147():111439. PubMed ID: 36638578
    [Abstract] [Full Text] [Related]

  • 9. Evaluation of the physiological benefits of a passive back-support exoskeleton during lifting and working in forward leaning postures.
    van Sluijs RM, Wehrli M, Brunner A, Lambercy O.
    J Biomech; 2023 Mar 26; 149():111489. PubMed ID: 36806003
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. In-Field Training of a Passive Back Exoskeleton Changes the Biomechanics of Logistic Workers.
    Schrøder Jakobsen L, Samani A, Desbrosses K, de Zee M, Madeleine P.
    IISE Trans Occup Ergon Hum Factors; 2024 Mar 26; 12(3):149-161. PubMed ID: 38869954
    [Abstract] [Full Text] [Related]

  • 12. Development and Evaluation of a Lumbar Assisted Exoskeleton With Mixed Lifting Tasks by Various Postures.
    Li J, He Y, Sun J, Li F, Ye J, Chen G, Pang J, Wu X.
    IEEE Trans Neural Syst Rehabil Eng; 2023 Mar 26; 31():2111-2119. PubMed ID: 37079423
    [Abstract] [Full Text] [Related]

  • 13. Lifting over an obstacle: effects of one-handed lifting and hand support on trunk kinematics and low back loading.
    Kingma I, van Dieën JH.
    J Biomech; 2004 Feb 26; 37(2):249-55. PubMed ID: 14706328
    [Abstract] [Full Text] [Related]

  • 14. Optimizing Calibration Procedure to Train a Regression-Based Prediction Model of Actively Generated Lumbar Muscle Moments for Exoskeleton Control.
    Tabasi A, Lazzaroni M, Brouwer NP, Kingma I, van Dijk W, de Looze MP, Toxiri S, Ortiz J, van Dieën JH.
    Sensors (Basel); 2021 Dec 23; 22(1):. PubMed ID: 35009627
    [Abstract] [Full Text] [Related]

  • 15. Influence of a passive exoskeleton on kinematics, joint moments, and self-reported ratings during a lifting task.
    Arauz PG, Chavez G, Reinoso V, Ruiz P, Ortiz E, Cevallos C, Garcia G.
    J Biomech; 2024 Jan 23; 162():111886. PubMed ID: 38043494
    [Abstract] [Full Text] [Related]

  • 16. Analysis of squat and stoop dynamic liftings: muscle forces and internal spinal loads.
    Bazrgari B, Shirazi-Adl A, Arjmand N.
    Eur Spine J; 2007 May 23; 16(5):687-99. PubMed ID: 17103232
    [Abstract] [Full Text] [Related]

  • 17. Use of a passive lumbar back exoskeleton during a repetitive lifting task: effects on physiologic parameters and intersubject variability.
    Erezuma UL, Espin A, Torres-Unda J, Esain I, Irazusta J, Rodriguez-Larrad A.
    Int J Occup Saf Ergon; 2022 Dec 23; 28(4):2377-2384. PubMed ID: 34608854
    [Abstract] [Full Text] [Related]

  • 18. Biomechanical analysis of different back-supporting exoskeletons regarding musculoskeletal loading during lifting and holding.
    Johns J, Schultes I, Heinrich K, Potthast W, Glitsch U.
    J Biomech; 2024 May 23; 168():112125. PubMed ID: 38688184
    [Abstract] [Full Text] [Related]

  • 19. Biomechanical Consequences of Using Passive and Active Back-Support Exoskeletons during Different Manual Handling Tasks.
    Schwartz M, Desbrosses K, Theurel J, Mornieux G.
    Int J Environ Res Public Health; 2023 Jul 28; 20(15):. PubMed ID: 37569010
    [Abstract] [Full Text] [Related]

  • 20. A Lower-Back Exoskeleton With a Four-Bar Linkage Structure for Providing Extensor Moment and Lumbar Traction Force.
    Moon C, Bae J, Kwak J, Hong D.
    IEEE Trans Neural Syst Rehabil Eng; 2022 Jul 28; 30():729-737. PubMed ID: 35286262
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.