These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
189 related items for PubMed ID: 37504153
1. Investigation of the Impact of Hydrogen Bonding Degree in Long Single-Stranded DNA (ssDNA) Generated with Dual Rolling Circle Amplification (RCA) on the Preparation and Performance of DNA Hydrogels. Wang X, Wang H, Zhang H, Yang T, Zhao B, Yan J. Biosensors (Basel); 2023 Jul 23; 13(7):. PubMed ID: 37504153 [Abstract] [Full Text] [Related]
2. Fishing unfunctionalized SERS tags with DNA hydrogel network generated by ligation-rolling circle amplification for simple and ultrasensitive detection of kanamycin. Chen Q, Tian R, Liu G, Wen Y, Bian X, Luan D, Wang H, Lai K, Yan J. Biosens Bioelectron; 2022 Jul 01; 207():114187. PubMed ID: 35325717 [Abstract] [Full Text] [Related]
3. Rolling circle amplification (RCA)-based DNA hydrogel. Yao C, Zhang R, Tang J, Yang D. Nat Protoc; 2021 Dec 01; 16(12):5460-5483. PubMed ID: 34716450 [Abstract] [Full Text] [Related]
5. Assembly of Rolling Circle Amplification-Produced Ultralong Single-Stranded DNA to Construct Biofunctional DNA Materials. Tang J, Liang A, Yao C, Yang D. Chemistry; 2023 Feb 10; 29(9):e202202673. PubMed ID: 36263767 [Abstract] [Full Text] [Related]
6. Quantitative Characterization of RCA-Based DNA Hydrogels - Towards Rational Materials Design. Moench SA, Lemke P, Weisser J, Stoev ID, Rabe KS, Domínguez CM, Niemeyer CM. Chemistry; 2024 Sep 19; 30(53):e202401788. PubMed ID: 38995737 [Abstract] [Full Text] [Related]
7. A novel aptasensor based on DNA hydrogel for sensitive visual detection of ochratoxin A. Hao L, Liu X, Xu S, An F, Gu H, Xu F. Mikrochim Acta; 2021 Oct 28; 188(11):395. PubMed ID: 34709464 [Abstract] [Full Text] [Related]
8. Periodic assembly of nanospecies on repetitive DNA sequences generated on gold nanoparticles by rolling circle amplification. Zhao W, Brook MA, Li Y. Methods Mol Biol; 2008 Oct 28; 474():79-90. PubMed ID: 19031062 [Abstract] [Full Text] [Related]
9. Single-Step Printable Hydrogel Microarray Integrating Long-Chain DNA for the Discriminative and Size-Specific Sensing of Nucleic Acids. Pikula M, Ali MM, Filipe C, Hoare T. ACS Appl Mater Interfaces; 2021 Jan 20; 13(2):2360-2370. PubMed ID: 33411496 [Abstract] [Full Text] [Related]
10. Fabrication and Biomedical Applications of "Polymer-Like" Nucleic Acids Enzymatically Produced by Rolling Circle Amplification. Li J, Lin L, Yu J, Zhai S, Liu G, Tian L. ACS Appl Bio Mater; 2019 Oct 21; 2(10):4106-4120. PubMed ID: 35021425 [Abstract] [Full Text] [Related]
11. Construction of rolling circle amplification-based DNA nanostructures for biomedical applications. Xu Y, Lv Z, Yao C, Yang D. Biomater Sci; 2022 Jun 14; 10(12):3054-3061. PubMed ID: 35535967 [Abstract] [Full Text] [Related]
12. Immunodetection and counting of circulating tumor cells (HepG2) by combining gold nanoparticle labeling, rolling circle amplification and ICP-MS detection of gold. Li X, Chen B, He M, Hu B. Mikrochim Acta; 2019 May 10; 186(6):344. PubMed ID: 31076917 [Abstract] [Full Text] [Related]
13. Lamb wave-based molecular diagnosis using DNA hydrogel formation by rolling circle amplification (RCA) process. Nam J, Jang WS, Kim J, Lee H, Lim CS. Biosens Bioelectron; 2019 Oct 01; 142():111496. PubMed ID: 31302395 [Abstract] [Full Text] [Related]
15. Construction of rolling circle amplification products-based pure nucleic acid nanostructures for biomedical applications. Li C, Wang Y, Li PF, Fu Q. Acta Biomater; 2023 Apr 01; 160():1-13. PubMed ID: 36764595 [Abstract] [Full Text] [Related]
17. Real-time monitoring of mycobacterium genomic DNA with target-primed rolling circle amplification by a Au nanoparticle-embedded SPR biosensor. Xiang Y, Zhu X, Huang Q, Zheng J, Fu W. Biosens Bioelectron; 2015 Apr 15; 66():512-9. PubMed ID: 25500527 [Abstract] [Full Text] [Related]
19. Preparation of DNA nanostructures with repetitive binding motifs by rolling circle amplification. Reiss E, Hölzel R, Bier FF. Methods Mol Biol; 2011 Apr 15; 749():151-68. PubMed ID: 21674371 [Abstract] [Full Text] [Related]
20. Multiplexed aptasensing of food contaminants by using terminal deoxynucleotidyl transferase-produced primer-triggered rolling circle amplification: application to the colorimetric determination of enrofloxacin, lead (II), Escherichia coli O157:H7 and tropomyosin. Du Y, Zhou Y, Wen Y, Bian X, Xie Y, Zhang W, Liu G, Yan J. Mikrochim Acta; 2019 Nov 25; 186(12):840. PubMed ID: 31768650 [Abstract] [Full Text] [Related] Page: [Next] [New Search]