These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
164 related items for PubMed ID: 37506558
21. A comparative study of dietary curcumin, nanocurcumin, and other classical amyloid-binding dyes for labeling and imaging of amyloid plaques in brain tissue of 5×-familial Alzheimer's disease mice. Maiti P, Hall TC, Paladugu L, Kolli N, Learman C, Rossignol J, Dunbar GL. Histochem Cell Biol; 2016 Nov; 146(5):609-625. PubMed ID: 27406082 [Abstract] [Full Text] [Related]
22. An Activatable NIR-II Fluorescent Reporter for In Vivo Imaging of Amyloid-β Plaques. Miao J, Miao M, Jiang Y, Zhao M, Li Q, Zhang Y, An Y, Pu K, Miao Q. Angew Chem Int Ed Engl; 2023 Feb 06; 62(7):e202216351. PubMed ID: 36512417 [Abstract] [Full Text] [Related]
23. In Vivo Near-Infrared Fluorescence Imaging Selective for Soluble Amyloid β Aggregates Using y-Shaped BODIPY Derivative. Akasaka T, Watanabe H, Ono M. J Med Chem; 2023 Oct 26; 66(20):14029-14046. PubMed ID: 37824378 [Abstract] [Full Text] [Related]
24. Rational Design of Near-Infrared Aggregation-Induced-Emission-Active Probes: In Situ Mapping of Amyloid-β Plaques with Ultrasensitivity and High-Fidelity. Fu W, Yan C, Guo Z, Zhang J, Zhang H, Tian H, Zhu WH. J Am Chem Soc; 2019 Feb 20; 141(7):3171-3177. PubMed ID: 30632737 [Abstract] [Full Text] [Related]
25. Labeling and Imaging of Amyloid Plaques in Brain Tissue Using the Natural Polyphenol Curcumin. Maiti P, Plemmons A, Bowers Z, Weaver C, Dunbar G. J Vis Exp; 2019 Nov 01; (153):. PubMed ID: 31736502 [Abstract] [Full Text] [Related]
26. Design, synthesis and evaluation of curcumin-based fluorescent probes to detect Aβ fibrils. Sato T, Hotsumi M, Makabe K, Konno H. Bioorg Med Chem Lett; 2018 Dec 01; 28(22):3520-3525. PubMed ID: 30297285 [Abstract] [Full Text] [Related]
27. Fluorescent Imaging of Amyloid-β Deposits in Brain: An Overview of Probe Development and a Highlight of the Applications for In Vivo Imaging. Fu H, Cui M. Curr Med Chem; 2018 Dec 01; 25(23):2736-2759. PubMed ID: 29446721 [Abstract] [Full Text] [Related]
28. In vivo detection of amyloid β deposition using ¹⁹F magnetic resonance imaging with a ¹⁹F-containing curcumin derivative in a mouse model of Alzheimer's disease. Yanagisawa D, Amatsubo T, Morikawa S, Taguchi H, Urushitani M, Shirai N, Hirao K, Shiino A, Inubushi T, Tooyama I. Neuroscience; 2011 Jun 16; 184():120-7. PubMed ID: 21497641 [Abstract] [Full Text] [Related]
30. Efficient near-infrared in vivo imaging of amyoid-β deposits in Alzheimer's disease mouse models. Schmidt A, Pahnke J. J Alzheimers Dis; 2012 Jun 16; 30(3):651-64. PubMed ID: 22460331 [Abstract] [Full Text] [Related]
31. CRANAD-28: A Robust Fluorescent Compound for Visualization of Amyloid Beta Plaques. Ran K, Yang J, Nair AV, Zhu B, Ran C. Molecules; 2020 Feb 16; 25(4):. PubMed ID: 32079064 [Abstract] [Full Text] [Related]
32. Synthesis and evaluation of a (18)F-curcumin derivate for β-amyloid plaque imaging. Rokka J, Snellman A, Zona C, La Ferla B, Nicotra F, Salmona M, Forloni G, Haaparanta-Solin M, Rinne JO, Solin O. Bioorg Med Chem; 2014 May 01; 22(9):2753-62. PubMed ID: 24702859 [Abstract] [Full Text] [Related]
33. Near-Infrared Fluorescent Probes with Rotatable Polyacetylene Chains for the Detection of Amyloid-β Plaques. Zhang L, Gong X, Tian C, Fu H, Tan H, Dai J, Cui M. J Phys Chem B; 2021 Jan 21; 125(2):497-506. PubMed ID: 33415984 [Abstract] [Full Text] [Related]
34. Development of Phenothiazine-Based Theranostic Compounds That Act Both as Inhibitors of β-Amyloid Aggregation and as Imaging Probes for Amyloid Plaques in Alzheimer's Disease. Dao P, Ye F, Liu Y, Du ZY, Zhang K, Dong CZ, Meunier B, Chen H. ACS Chem Neurosci; 2017 Apr 19; 8(4):798-806. PubMed ID: 28097868 [Abstract] [Full Text] [Related]
35. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP, Kayed R, Glabe CG, Frautschy SA, Cole GM. J Biol Chem; 2005 Feb 18; 280(7):5892-901. PubMed ID: 15590663 [Abstract] [Full Text] [Related]
36. An Amyloid-β Targeting Chemical Exchange Saturation Transfer Probe for In Vivo Detection of Alzheimer's Disease. Wang R, Wang C, Dai Z, Chen Y, Shen Z, Xiao G, Chen Y, Zhou JN, Zhuang Z, Wu R. ACS Chem Neurosci; 2019 Aug 21; 10(8):3859-3867. PubMed ID: 31343167 [Abstract] [Full Text] [Related]
37. Discovery of a novel fluorescent probe for the sensitive detection of β-amyloid deposits. Ren W, Xu M, Liang SH, Xiang H, Tang L, Zhang M, Ding D, Li X, Zhang H, Hu Y. Biosens Bioelectron; 2016 Jan 15; 75():136-41. PubMed ID: 26313423 [Abstract] [Full Text] [Related]
38. Smart near-infrared fluorescence probes with donor-acceptor structure for in vivo detection of β-amyloid deposits. Cui M, Ono M, Watanabe H, Kimura H, Liu B, Saji H. J Am Chem Soc; 2014 Mar 05; 136(9):3388-94. PubMed ID: 24555862 [Abstract] [Full Text] [Related]
39. Design and synthesis of hemicyanine-based NIRF probe for detecting Aβ aggregates in Alzheimer's disease. Zhao X, Li Y, Li Z, Hu D, Zhang R, Li M, Liu Y, Xiu X, Jia H, Wang H, Liu Y, Yang H, Cheng M. Bioorg Chem; 2024 Sep 05; 150():107514. PubMed ID: 38870704 [Abstract] [Full Text] [Related]
40. In vivo near-infrared fluorescence imaging of amyloid-β plaques with a dicyanoisophorone-based probe. Zhu JY, Zhou LF, Li YK, Chen SB, Yan JW, Zhang L. Anal Chim Acta; 2017 Apr 08; 961():112-118. PubMed ID: 28224903 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]