These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


141 related items for PubMed ID: 37506618

  • 1. Neurophysiological, muscular, and perceptual adaptations of exoskeleton use over days during overhead work with competing cognitive demands.
    Tyagi O, Rana Mukherjee T, Mehta RK.
    Appl Ergon; 2023 Nov; 113():104097. PubMed ID: 37506618
    [Abstract] [Full Text] [Related]

  • 2. An Occupational Shoulder Exoskeleton Reduces Muscle Activity and Fatigue During Overhead Work.
    De Bock S, Rossini M, Lefeber D, Rodriguez-Guerrero C, Geeroms J, Meeusen R, De Pauw K.
    IEEE Trans Biomed Eng; 2022 Oct; 69(10):3008-3020. PubMed ID: 35290183
    [Abstract] [Full Text] [Related]

  • 3. Effects of an exoskeleton on muscle activity in tasks requiring arm elevation: Part I - Experiments in a controlled laboratory setting.
    Mänttäri S, Rauttola AP, Halonen J, Karkulehto J, Säynäjäkangas P, Oksa J.
    Work; 2024 Oct; 77(4):1179-1188. PubMed ID: 37980590
    [Abstract] [Full Text] [Related]

  • 4. Biomechanical and Metabolic Effectiveness of an Industrial Exoskeleton for Overhead Work.
    Schmalz T, Schändlinger J, Schuler M, Bornmann J, Schirrmeister B, Kannenberg A, Ernst M.
    Int J Environ Res Public Health; 2019 Nov 29; 16(23):. PubMed ID: 31795365
    [Abstract] [Full Text] [Related]

  • 5. Three passive arm-support exoskeletons have inconsistent effects on muscle activity, posture, and perceived exertion during diverse simulated pseudo-static overhead nutrunning tasks.
    Ojelade A, Morris W, Kim S, Kelson D, Srinivasan D, Smets M, Nussbaum MA.
    Appl Ergon; 2023 Jul 29; 110():104015. PubMed ID: 36933418
    [Abstract] [Full Text] [Related]

  • 6. Model-Based Comparison of Passive and Active Assistance Designs in an Occupational Upper Limb Exoskeleton for Overhead Lifting.
    Zhou X, Zheng L.
    IISE Trans Occup Ergon Hum Factors; 2021 Jul 29; 9(3-4):167-185. PubMed ID: 34254566
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. A passive upper-limb exoskeleton reduced muscular loading during augmented reality interactions.
    Kong YK, Park SS, Shim JW, Choi KH, Shim HH, Kia K, Kim JH.
    Appl Ergon; 2023 May 29; 109():103982. PubMed ID: 36739780
    [Abstract] [Full Text] [Related]

  • 9. Design and evaluation of the OmniSuit: A passive occupational exoskeleton for back and shoulder support.
    van Sluijs R, Scholtysik T, Brunner A, Kuoni L, Bee D, Kos M, Bartenbach V, Lambercy O.
    Appl Ergon; 2024 Oct 29; 120():104332. PubMed ID: 38876001
    [Abstract] [Full Text] [Related]

  • 10. The Exo4Work shoulder exoskeleton effectively reduces muscle and joint loading during simulated occupational tasks above shoulder height.
    van der Have A, Rossini M, Rodriguez-Guerrero C, Van Rossom S, Jonkers I.
    Appl Ergon; 2022 Sep 29; 103():103800. PubMed ID: 35598416
    [Abstract] [Full Text] [Related]

  • 11. Physiological consequences of using an upper limb exoskeleton during manual handling tasks.
    Theurel J, Desbrosses K, Roux T, Savescu A.
    Appl Ergon; 2018 Feb 29; 67():211-217. PubMed ID: 29122192
    [Abstract] [Full Text] [Related]

  • 12. Design and ergonomic assessment of a passive head/neck supporting exoskeleton for overhead work use.
    Garosi E, Mazloumi A, Jafari AH, Keihani A, Shamsipour M, Kordi R, Kazemi Z.
    Appl Ergon; 2022 May 29; 101():103699. PubMed ID: 35114511
    [Abstract] [Full Text] [Related]

  • 13. A physiological and biomechanical investigation of three passive upper-extremity exoskeletons during simulated overhead work.
    Weston EB, Alizadeh M, Hani H, Knapik GG, Souchereau RA, Marras WS.
    Ergonomics; 2022 Jan 29; 65(1):105-117. PubMed ID: 34338595
    [Abstract] [Full Text] [Related]

  • 14. Impact of a passive upper-body exoskeleton on muscular activity and precision in overhead single and dual tasks: an explorative randomized crossover study.
    Gräf J, Grospretre S, Argubi-Wollesen A, Wollesen B.
    Front Neurol; 2024 Jan 29; 15():1405473. PubMed ID: 39006232
    [Abstract] [Full Text] [Related]

  • 15. Effects of exoskeleton design and precision requirements on physical demands and quality in a simulated overhead drilling task.
    Alabdulkarim S, Kim S, Nussbaum MA.
    Appl Ergon; 2019 Oct 29; 80():136-145. PubMed ID: 31280797
    [Abstract] [Full Text] [Related]

  • 16. Impact of a passive upper-body exoskeleton on muscle activity, heart rate and discomfort during a carrying task.
    Garcia G, Arauz PG, Alvarez I, Encalada N, Vega S, Martin BJ.
    PLoS One; 2023 Oct 29; 18(6):e0287588. PubMed ID: 37352272
    [Abstract] [Full Text] [Related]

  • 17. Neural and biomechanical tradeoffs associated with human-exoskeleton interactions.
    Zhu Y, Weston EB, Mehta RK, Marras WS.
    Appl Ergon; 2021 Oct 29; 96():103494. PubMed ID: 34126572
    [Abstract] [Full Text] [Related]

  • 18. Objective and Subjective Effects of a Passive Exoskeleton on Overhead Work.
    Maurice P, Camernik J, Gorjan D, Schirrmeister B, Bornmann J, Tagliapietra L, Latella C, Pucci D, Fritzsche L, Ivaldi S, Babic J.
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jan 29; 28(1):152-164. PubMed ID: 31581086
    [Abstract] [Full Text] [Related]

  • 19. Evaluation of a spring-loaded upper-limb exoskeleton in cleaning activities.
    Pacifico I, Aprigliano F, Parri A, Cannillo G, Melandri I, Sabatini AM, Violante FS, Molteni F, Giovacchini F, Vitiello N, Crea S.
    Appl Ergon; 2023 Jan 29; 106():103877. PubMed ID: 36095895
    [Abstract] [Full Text] [Related]

  • 20. Passive shoulder exoskeleton support partially mitigates fatigue-induced effects in overhead work.
    De Bock S, Ampe T, Rossini M, Tassignon B, Lefeber D, Rodriguez-Guerrero C, Roelands B, Geeroms J, Meeusen R, De Pauw K.
    Appl Ergon; 2023 Jan 29; 106():103903. PubMed ID: 36148702
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.