These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


153 related items for PubMed ID: 37510351

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. GWAS and bulked segregant analysis reveal the Loci controlling growth habit-related traits in cultivated Peanut (Arachis hypogaea L.).
    Li L, Cui S, Dang P, Yang X, Wei X, Chen K, Liu L, Chen CY.
    BMC Genomics; 2022 May 27; 23(1):403. PubMed ID: 35624420
    [Abstract] [Full Text] [Related]

  • 4. Genome-wide association study and development of molecular markers for yield and quality traits in peanut (Arachis hypogaea L.).
    Guo M, Deng L, Gu J, Miao J, Yin J, Li Y, Fang Y, Huang B, Sun Z, Qi F, Dong W, Lu Z, Li S, Hu J, Zhang X, Ren L.
    BMC Plant Biol; 2024 Apr 05; 24(1):244. PubMed ID: 38575936
    [Abstract] [Full Text] [Related]

  • 5. Genetic dissection of fatty acid components in the Chinese peanut (Arachis hypogaea L.) mini-core collection under multi-environments.
    Zhou X, Luo H, Yu B, Huang L, Liu N, Chen W, Liao B, Lei Y, Huai D, Guo P, Li W, Guo J, Jiang H.
    PLoS One; 2022 Apr 05; 17(12):e0279650. PubMed ID: 36584016
    [Abstract] [Full Text] [Related]

  • 6. GWAS Discovery Of Candidate Genes for Yield-Related Traits in Peanut and Support from Earlier QTL Mapping Studies.
    Wang J, Yan C, Li Y, Li C, Zhao X, Yuan C, Sun Q, Shan S.
    Genes (Basel); 2019 Oct 12; 10(10):. PubMed ID: 31614874
    [Abstract] [Full Text] [Related]

  • 7. Genomic insights into the genetic signatures of selection and seed trait loci in cultivated peanut.
    Liu Y, Shao L, Zhou J, Li R, Pandey MK, Han Y, Cui F, Zhang J, Guo F, Chen J, Shan S, Fan G, Zhang H, Seim I, Liu X, Li X, Varshney RK, Li G, Wan S.
    J Adv Res; 2022 Dec 12; 42():237-248. PubMed ID: 36513415
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Genetic Diversity, Population Structure, and Botanical Variety of 320 Global Peanut Accessions Revealed Through Tunable Genotyping-by-Sequencing.
    Zheng Z, Sun Z, Fang Y, Qi F, Liu H, Miao L, Du P, Shi L, Gao W, Han S, Dong W, Tang F, Cheng F, Hu H, Huang B, Zhang X.
    Sci Rep; 2018 Sep 28; 8(1):14500. PubMed ID: 30266974
    [Abstract] [Full Text] [Related]

  • 10. Genome-wide approaches delineate the additive, epistatic, and pleiotropic nature of variants controlling fatty acid composition in peanut (Arachis hypogaea L.).
    Otyama PI, Chamberlin K, Ozias-Akins P, Graham MA, Cannon EKS, Cannon SB, MacDonald GE, Anglin NL.
    G3 (Bethesda); 2022 Jan 04; 12(1):. PubMed ID: 34751378
    [Abstract] [Full Text] [Related]

  • 11. Identification of QTLs for resistance to leaf spots in cultivated peanut (Arachis hypogaea L.) through GWAS analysis.
    Zhang H, Chu Y, Dang P, Tang Y, Jiang T, Clevenger JP, Ozias-Akins P, Holbrook C, Wang ML, Campbell H, Hagan A, Chen C.
    Theor Appl Genet; 2020 Jul 04; 133(7):2051-2061. PubMed ID: 32144466
    [Abstract] [Full Text] [Related]

  • 12. Abundant microsatellite diversity and oil content in wild Arachis species.
    Huang L, Jiang H, Ren X, Chen Y, Xiao Y, Zhao X, Tang M, Huang J, Upadhyaya HD, Liao B.
    PLoS One; 2012 Jul 04; 7(11):e50002. PubMed ID: 23185514
    [Abstract] [Full Text] [Related]

  • 13. Genotyping-by-sequencing based genetic mapping reveals large number of epistatic interactions for stem rot resistance in groundnut.
    Dodia SM, Joshi B, Gangurde SS, Thirumalaisamy PP, Mishra GP, Narandrakumar D, Soni P, Rathnakumar AL, Dobaria JR, Sangh C, Chitikineni A, Chanda SV, Pandey MK, Varshney RK, Thankappan R.
    Theor Appl Genet; 2019 Apr 04; 132(4):1001-1016. PubMed ID: 30539317
    [Abstract] [Full Text] [Related]

  • 14. Genetic Diversity and Genome-Wide Association Study of Seed Aspect Ratio Using a High-Density SNP Array in Peanut (Arachis hypogaea L.).
    Zou K, Kim KS, Kim K, Kang D, Park YH, Sun H, Ha BK, Ha J, Jun TH.
    Genes (Basel); 2020 Dec 22; 12(1):. PubMed ID: 33375051
    [Abstract] [Full Text] [Related]

  • 15. A high-density genetic map of Arachis duranensis, a diploid ancestor of cultivated peanut.
    Nagy ED, Guo Y, Tang S, Bowers JE, Okashah RA, Taylor CA, Zhang D, Khanal S, Heesacker AF, Khalilian N, Farmer AD, Carrasquilla-Garcia N, Penmetsa RV, Cook D, Stalker HT, Nielsen N, Ozias-Akins P, Knapp SJ.
    BMC Genomics; 2012 Sep 11; 13():469. PubMed ID: 22967170
    [Abstract] [Full Text] [Related]

  • 16. Molecular marker development from transcript sequences and germplasm evaluation for cultivated peanut (Arachis hypogaea L.).
    Peng Z, Gallo M, Tillman BL, Rowland D, Wang J.
    Mol Genet Genomics; 2016 Feb 11; 291(1):363-81. PubMed ID: 26362763
    [Abstract] [Full Text] [Related]

  • 17. Genome-Wide Association Studies of Embryogenic Callus Induction Rate in Peanut (Arachis hypogaea L.).
    Luo D, Shi L, Sun Z, Qi F, Liu H, Xue L, Li X, Liu H, Qu P, Zhao H, Dai X, Dong W, Zheng Z, Huang B, Fu L, Zhang X.
    Genes (Basel); 2024 Jan 26; 15(2):. PubMed ID: 38397150
    [Abstract] [Full Text] [Related]

  • 18. Unraveling the mechanisms of resistance to Sclerotium rolfsii in peanut (Arachis hypogaea L.) using comparative RNA-Seq analysis of resistant and susceptible genotypes.
    Bosamia TC, Dodia SM, Mishra GP, Ahmad S, Joshi B, Thirumalaisamy PP, Kumar N, Rathnakumar AL, Sangh C, Kumar A, Thankappan R.
    PLoS One; 2020 Jan 26; 15(8):e0236823. PubMed ID: 32745143
    [Abstract] [Full Text] [Related]

  • 19. Genome-wide association study reveals the genetic basis of amino acids contents variations in Peanut (Arachis hypogaea L.).
    Umer MJ, Lu Q, Huang L, Batool R, Liu H, Li H, Wang R, Qianxia Y, Varshney RK, Pandey MK, Hong Y, Chen X.
    Physiol Plant; 2024 Jan 26; 176(5):e14542. PubMed ID: 39363145
    [Abstract] [Full Text] [Related]

  • 20. A genomic variation map provides insights into peanut diversity in China and associations with 28 agronomic traits.
    Lu Q, Huang L, Liu H, Garg V, Gangurde SS, Li H, Chitikineni A, Guo D, Pandey MK, Li S, Liu H, Wang R, Deng Q, Du P, Varshney RK, Liang X, Hong Y, Chen X.
    Nat Genet; 2024 Mar 26; 56(3):530-540. PubMed ID: 38378864
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.