These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


169 related items for PubMed ID: 37514841

  • 1. A Transformer-Based Neural Network for Gait Prediction in Lower Limb Exoskeleton Robots Using Plantar Force.
    Ren J, Wang A, Li H, Yue X, Meng L.
    Sensors (Basel); 2023 Jul 20; 23(14):. PubMed ID: 37514841
    [Abstract] [Full Text] [Related]

  • 2. Design and analysis of a lower limb assistive exoskeleton robot.
    Li X, Wang KY, Yang ZY.
    Technol Health Care; 2024 Jul 20; 32(S1):79-93. PubMed ID: 38759039
    [Abstract] [Full Text] [Related]

  • 3. Estimation of the Continuous Walking Angle of Knee and Ankle (Talocrural Joint, Subtalar Joint) of a Lower-Limb Exoskeleton Robot Using a Neural Network.
    Lee T, Kim I, Lee SH.
    Sensors (Basel); 2021 Apr 16; 21(8):. PubMed ID: 33923587
    [Abstract] [Full Text] [Related]

  • 4. Prediction of Limb Joint Angles Based on Multi-Source Signals by GS-GRNN for Exoskeleton Wearer.
    Xie H, Li G, Zhao X, Li F.
    Sensors (Basel); 2020 Feb 18; 20(4):. PubMed ID: 32085505
    [Abstract] [Full Text] [Related]

  • 5. Prediction of Plantar Forces During Gait Using Wearable Sensors and Deep Neural Networks.
    Nagashima M, Cho SG, Ding M, Garcia Ricardez GA, Takamatsu J, Ogasawara T.
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul 18; 2019():3629-3632. PubMed ID: 31946662
    [Abstract] [Full Text] [Related]

  • 6. Design of a control framework for lower limb exoskeleton rehabilitation robot based on predictive assessment.
    Wang Y, Liu Z, Feng Z.
    Clin Biomech (Bristol); 2022 May 18; 95():105660. PubMed ID: 35561659
    [Abstract] [Full Text] [Related]

  • 7. Future Image Prediction of Plantar Pressure During Gait Using Spatio-temporal Transformer.
    Ahmadian M, Rahmani-Boldaji S, Shirian A.
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul 18; 2022():3039-3042. PubMed ID: 36085971
    [Abstract] [Full Text] [Related]

  • 8. Human Body Mixed Motion Pattern Recognition Method Based on Multi-Source Feature Parameter Fusion.
    Song J, Zhu A, Tu Y, Wang Y, Arif MA, Shen H, Shen Z, Zhang X, Cao G.
    Sensors (Basel); 2020 Jan 18; 20(2):. PubMed ID: 31963751
    [Abstract] [Full Text] [Related]

  • 9. Optimization of Torque-Control Model for Quasi-Direct-Drive Knee Exoskeleton Robots Based on Regression Forecasting.
    Xia Y, Wei W, Lin X, Li J.
    Sensors (Basel); 2024 Feb 26; 24(5):. PubMed ID: 38475041
    [Abstract] [Full Text] [Related]

  • 10. Simulation on the Effect of Gait Variability, Delays, and Inertia with Respect to Wearer Energy Savings with Exoskeleton Assistance.
    Fang S, Kinney AL, Reissman ME, Reissman T.
    IEEE Int Conf Rehabil Robot; 2019 Jun 26; 2019():506-511. PubMed ID: 31374680
    [Abstract] [Full Text] [Related]

  • 11. A Lightweight Exoskeleton-Based Portable Gait Data Collection System.
    Haque MR, Imtiaz MH, Kwak ST, Sazonov E, Chang YH, Shen X.
    Sensors (Basel); 2021 Jan 24; 21(3):. PubMed ID: 33498956
    [Abstract] [Full Text] [Related]

  • 12. Development of an individualized stable and force-reducing lower-limb exoskeleton.
    Huang GS, Yen MH, Chang CC, Lai CL, Chen CC.
    Biomed Phys Eng Express; 2024 Aug 30; 10(5):. PubMed ID: 39212326
    [Abstract] [Full Text] [Related]

  • 13. Channel Synergy-based Human-Robot Interface for a Lower Limb Walking Assistance Exoskeleton.
    Shi K, Huang R, Mu F, Peng Z, Yin J, Cheng H.
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov 30; 2021():1076-1081. PubMed ID: 34891474
    [Abstract] [Full Text] [Related]

  • 14. Influence of Varied Load Assistance with Exoskeleton-Type Robotic Device on Gait Rehabilitation in Healthy Adult Men.
    Tanaka T, Matsumura R, Miura T.
    Int J Environ Res Public Health; 2022 Aug 06; 19(15):. PubMed ID: 35955068
    [Abstract] [Full Text] [Related]

  • 15. A Neural Network-Based Gait Phase Classification Method Using Sensors Equipped on Lower Limb Exoskeleton Robots.
    Jung JY, Heo W, Yang H, Park H.
    Sensors (Basel); 2015 Oct 30; 15(11):27738-59. PubMed ID: 26528986
    [Abstract] [Full Text] [Related]

  • 16. A real-time stable-control gait switching strategy for lower-limb rehabilitation exoskeleton.
    Guo Z, Wang C, Song C.
    PLoS One; 2020 Oct 30; 15(8):e0238247. PubMed ID: 32853239
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Differential Soft Sensor-Based Measurement of Interactive Force and Assistive Torque for a Robotic Hip Exoskeleton.
    Wang S, Zhang B, Yu Z, Yan Y.
    Sensors (Basel); 2021 Sep 30; 21(19):. PubMed ID: 34640867
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Compact Hip-Force Sensor for a Gait-Assistance Exoskeleton System.
    Choi H, Seo K, Hyung S, Shim Y, Lim SC.
    Sensors (Basel); 2018 Feb 13; 18(2):. PubMed ID: 29438300
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.