These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
164 related items for PubMed ID: 37528985
1. Carbon allocation of Spirodela polyrhiza under boron toxicity. Pagliuso D, Pedro de Jesus Pereira J, Ulrich JC, Barbosa Cotrim ME, Buckeridge MS, Grandis A. Front Plant Sci; 2023; 14():1208888. PubMed ID: 37528985 [Abstract] [Full Text] [Related]
2. Correlation of Apiose Levels and Growth Rates in Duckweeds. Pagliuso D, Grandis A, Igarashi ES, Lam E, Buckeridge MS. Front Chem; 2018; 6():291. PubMed ID: 30079335 [Abstract] [Full Text] [Related]
3. Changes in the abundance of cell wall apiogalacturonan and xylogalacturonan and conservation of rhamnogalacturonan II structure during the diversification of the Lemnoideae. Avci U, Peña MJ, O'Neill MA. Planta; 2018 Apr; 247(4):953-971. PubMed ID: 29288327 [Abstract] [Full Text] [Related]
4. Linkage structure of cell-wall polysaccharides from three duckweed species. Sowinski EE, Gilbert S, Lam E, Carpita NC. Carbohydr Polym; 2019 Nov 01; 223():115119. PubMed ID: 31426999 [Abstract] [Full Text] [Related]
5. Effects of Boron and NaCl on Antioxidant Defence Mechanisms in Duckweeds (Spirodela polyrhiza L.). Uruc Parlak K. Pak J Biol Sci; 2021 Jan 01; 24(9):989-996. PubMed ID: 34585552 [Abstract] [Full Text] [Related]
6. Depletion of UDP-D-apiose/UDP-D-xylose synthases results in rhamnogalacturonan-II deficiency, cell wall thickening, and cell death in higher plants. Ahn JW, Verma R, Kim M, Lee JY, Kim YK, Bang JW, Reiter WD, Pai HS. J Biol Chem; 2006 May 12; 281(19):13708-13716. PubMed ID: 16549428 [Abstract] [Full Text] [Related]
7. Functional Characterization of UDP-apiose Synthases from Bryophytes and Green Algae Provides Insight into the Appearance of Apiose-containing Glycans during Plant Evolution. Smith J, Yang Y, Levy S, Adelusi OO, Hahn MG, O'Neill MA, Bar-Peled M. J Biol Chem; 2016 Oct 07; 291(41):21434-21447. PubMed ID: 27551039 [Abstract] [Full Text] [Related]
8. Large-scale screening and characterisation of Lemna aequinoctialis and Spirodela polyrhiza strains for starch production. Ma YB, Zhu M, Yu CJ, Wang Y, Liu Y, Li ML, Sun YD, Zhao JS, Zhou GK. Plant Biol (Stuttg); 2018 Mar 07; 20(2):357-364. PubMed ID: 29222918 [Abstract] [Full Text] [Related]
9. Developmental Control of Apiogalacturonan Biosynthesis and UDP-Apiose Production in a Duckweed. Longland JM, Fry SC, Trewavas AJ. Plant Physiol; 1989 Jul 07; 90(3):972-6. PubMed ID: 16666907 [Abstract] [Full Text] [Related]
10. Physiological and Transcriptomic Analysis Reveals Distorted Ion Homeostasis and Responses in the Freshwater Plant Spirodela polyrhiza L. under Salt Stress. Fu L, Ding Z, Sun X, Zhang J. Genes (Basel); 2019 Sep 24; 10(10):. PubMed ID: 31554307 [Abstract] [Full Text] [Related]
11. Carbon and energy fixation of great duckweed Spirodela polyrhiza growing in swine wastewater. Wang W, Yang C, Tang X, Zhu Q, Pan K, Cai D, Hu Q, Ma D. Environ Sci Pollut Res Int; 2015 Oct 24; 22(20):15804-11. PubMed ID: 26036587 [Abstract] [Full Text] [Related]
12. Light intensity drives different growth strategies in two duckweed species: Lemna minor L. and Spirodela polyrhiza (L.) Schleiden. Strzałek M, Kufel L. PeerJ; 2021 Oct 24; 9():e12698. PubMed ID: 35036168 [Abstract] [Full Text] [Related]
13. Growth Promotion of Giant Duckweed Spirodela polyrhiza (Lemnaceae) by Ensifer sp. SP4 Through Enhancement of Nitrogen Metabolism and Photosynthesis. Toyama T, Mori K, Tanaka Y, Ike M, Morikawa M. Mol Plant Microbe Interact; 2022 Jan 24; 35(1):28-38. PubMed ID: 34622686 [Abstract] [Full Text] [Related]
14. Making and breaking of boron bridges in the pectic domain rhamnogalacturonan-II at apoplastic pH in vivo and in vitro. Begum RA, Messenger DJ, Fry SC. Plant J; 2023 Mar 24; 113(6):1310-1329. PubMed ID: 36658763 [Abstract] [Full Text] [Related]
15. Synthesis of UDP-apiose in Bacteria: The marine phototroph Geminicoccus roseus and the plant pathogen Xanthomonas pisi. Smith JA, Bar-Peled M. PLoS One; 2017 Mar 24; 12(9):e0184953. PubMed ID: 28931093 [Abstract] [Full Text] [Related]
16. Galacturonosyltransferase 4 silencing alters pectin composition and carbon partitioning in tomato. de Godoy F, Bermúdez L, Lira BS, de Souza AP, Elbl P, Demarco D, Alseekh S, Insani M, Buckeridge M, Almeida J, Grigioni G, Fernie AR, Carrari F, Rossi M. J Exp Bot; 2013 May 24; 64(8):2449-66. PubMed ID: 23599271 [Abstract] [Full Text] [Related]
17. UDP-Api/UDP-Xyl synthases affect plant development by controlling the content of UDP-Api to regulate the RG-II-borate complex. Zhao X, Ebert B, Zhang B, Liu H, Zhang Y, Zeng W, Rautengarten C, Li H, Chen X, Bacic A, Wang G, Men S, Zhou Y, Heazlewood JL, Wu AM. Plant J; 2020 Sep 24; 104(1):252-267. PubMed ID: 32662159 [Abstract] [Full Text] [Related]
18. The biosynthesis of the branched-chain sugar d-apiose in plants: functional cloning and characterization of a UDP-d-apiose/UDP-d-xylose synthase from Arabidopsis. Mølhøj M, Verma R, Reiter WD. Plant J; 2003 Sep 24; 35(6):693-703. PubMed ID: 12969423 [Abstract] [Full Text] [Related]
19. Analysis of UDP-D-apiose/UDP-D-xylose synthase-catalyzed conversion of UDP-D-apiose phosphonate to UDP-D-xylose phosphonate: implications for a retroaldol-aldol mechanism. Choi SH, Mansoorabadi SO, Liu YN, Chien TC, Liu HW. J Am Chem Soc; 2012 Aug 29; 134(34):13946-9. PubMed ID: 22830643 [Abstract] [Full Text] [Related]
20. The biological responses and metal phytoaccumulation of duckweed Spirodela polyrhiza to manganese and chromium. Liu Y, Sanguanphun T, Yuan W, Cheng JJ, Meetam M. Environ Sci Pollut Res Int; 2017 Aug 29; 24(23):19104-19113. PubMed ID: 28660513 [Abstract] [Full Text] [Related] Page: [Next] [New Search]