These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


177 related items for PubMed ID: 37552921

  • 1. Markerless motion capture estimates of lower extremity kinematics and kinetics are comparable to marker-based across 8 movements.
    Song K, Hullfish TJ, Scattone Silva R, Silbernagel KG, Baxter JR.
    J Biomech; 2023 Aug; 157():111751. PubMed ID: 37552921
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Validation of OpenCap: A low-cost markerless motion capture system for lower-extremity kinematics during return-to-sport tasks.
    Turner JA, Chaaban CR, Padua DA.
    J Biomech; 2024 Jun; 171():112200. PubMed ID: 38905926
    [Abstract] [Full Text] [Related]

  • 4. Concurrent validity of lower extremity kinematics and jump characteristics captured in pre-school children by a markerless 3D motion capture system.
    Harsted S, Holsgaard-Larsen A, Hestbæk L, Boyle E, Lauridsen HH.
    Chiropr Man Therap; 2019 Jun; 27():39. PubMed ID: 31417672
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Examination of 2D frontal and sagittal markerless motion capture: Implications for markerless applications.
    Wade L, Needham L, Evans M, McGuigan P, Colyer S, Cosker D, Bilzon J.
    PLoS One; 2023 Jun; 18(11):e0293917. PubMed ID: 37943887
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Comparison of kinematics between Theia markerless and conventional marker-based gait analysis in clinical patients.
    Wren TAL, Isakov P, Rethlefsen SA.
    Gait Posture; 2023 Jul; 104():9-14. PubMed ID: 37285635
    [Abstract] [Full Text] [Related]

  • 15. Moving outside the lab: Markerless motion capture accurately quantifies sagittal plane kinematics during the vertical jump.
    Drazan JF, Phillips WT, Seethapathi N, Hullfish TJ, Baxter JR.
    J Biomech; 2021 Aug 26; 125():110547. PubMed ID: 34175570
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Principal component analysis of whole-body kinematics using markerless motion capture during static balance tasks.
    Eveleigh KJ, Deluzio KJ, Scott SH, Laende EK.
    J Biomech; 2023 May 26; 152():111556. PubMed ID: 37004391
    [Abstract] [Full Text] [Related]

  • 18. Agreement between a markerless and a marker-based motion capture systems for balance related quantities.
    Chaumeil A, Lahkar BK, Dumas R, Muller A, Robert T.
    J Biomech; 2024 Mar 26; 165():112018. PubMed ID: 38412623
    [Abstract] [Full Text] [Related]

  • 19. Comparison of Lower Extremity Joint Moment and Power Estimated by Markerless and Marker-Based Systems during Treadmill Running.
    Tang H, Pan J, Munkasy B, Duffy K, Li L.
    Bioengineering (Basel); 2022 Oct 19; 9(10):. PubMed ID: 36290542
    [Abstract] [Full Text] [Related]

  • 20. Inclusion of a skeletal model partly improves the reliability of lower limb joint angles derived from a markerless depth camera.
    Collings TJ, Devaprakash D, Pizzolato C, Lloyd DG, Barrett RS, Lenton GK, Thomeer LT, Bourne MN.
    J Biomech; 2024 Jun 19; 170():112160. PubMed ID: 38824704
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.