These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
257 related items for PubMed ID: 37569010
21. Effect Analysis of Wearing an Lumbar Exoskeleton on Coordinated Activities of the Low Back Muscles Using sEMG Topographic Maps. Jiang N, Wang D, Ji X, Wang L, Wu X, Li G. IEEE Trans Neural Syst Rehabil Eng; 2024; 32():259-270. PubMed ID: 38165795 [Abstract] [Full Text] [Related]
22. Potential exoskeleton uses for reducing low back muscular activity during farm tasks. Thamsuwan O, Milosavljevic S, Srinivasan D, Trask C. Am J Ind Med; 2020 Nov; 63(11):1017-1028. PubMed ID: 32926450 [Abstract] [Full Text] [Related]
23. The influence of high and low heeled shoes on EMG timing characteristics of the lumbar and hip extensor complex during trunk forward flexion and return task. Mika A, Clark BC, Oleksy Ł. Man Ther; 2013 Dec; 18(6):506-11. PubMed ID: 23632370 [Abstract] [Full Text] [Related]
24. Assessment of an active industrial exoskeleton to aid dynamic lifting and lowering manual handling tasks. Huysamen K, de Looze M, Bosch T, Ortiz J, Toxiri S, O'Sullivan LW. Appl Ergon; 2018 Apr; 68():125-131. PubMed ID: 29409626 [Abstract] [Full Text] [Related]
25. Effects of passive exoskeleton support on EMG measures of the neck, shoulder and trunk muscles while holding simulated surgical postures and performing a simulated surgical procedure. Tetteh E, Hallbeck MS, Mirka GA. Appl Ergon; 2022 Apr; 100():103646. PubMed ID: 34847371 [Abstract] [Full Text] [Related]
26. Real-time lumbosacral joint loading estimation in exoskeleton-assisted lifting conditions via electromyography-driven musculoskeletal models. Moya-Esteban A, Durandau G, van der Kooij H, Sartori M. J Biomech; 2023 Aug; 157():111727. PubMed ID: 37499430 [Abstract] [Full Text] [Related]
27. Passive exoskeletons alter low back load transfer mechanism. Zou H, Choi J, Hyeon Kang S, Kim S, Jin S. J Biomech; 2023 Jan; 147():111437. PubMed ID: 36680890 [Abstract] [Full Text] [Related]
28. Flexible sensor-based biomechanical evaluation of low-back exoskeleton use in lifting. Yin W, Chen Y, Reddy C, Zheng L, Mehta RK, Zhang X. Ergonomics; 2024 Feb; 67(2):182-193. PubMed ID: 37204270 [Abstract] [Full Text] [Related]
29. Effects of a Passive Back Support Exoskeleton when Lifting and Carrying Lumber Boards. Novak VD, Song Y, Gorsic M, Dai B. Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083667 [Abstract] [Full Text] [Related]
30. Model-Based Comparison of Passive and Active Assistance Designs in an Occupational Upper Limb Exoskeleton for Overhead Lifting. Zhou X, Zheng L. IISE Trans Occup Ergon Hum Factors; 2021 Jul; 9(3-4):167-185. PubMed ID: 34254566 [Abstract] [Full Text] [Related]
32. Effects of Two Passive Back-Support Exoskeletons on Muscle Activity, Energy Expenditure, and Subjective Assessments During Repetitive Lifting. Alemi MM, Madinei S, Kim S, Srinivasan D, Nussbaum MA. Hum Factors; 2020 May; 62(3):458-474. PubMed ID: 32017609 [Abstract] [Full Text] [Related]
36. The effect of a passive trunk exoskeleton on metabolic costs during lifting and walking. Baltrusch SJ, van Dieën JH, Bruijn SM, Koopman AS, van Bennekom CAM, Houdijk H. Ergonomics; 2019 Jul; 62(7):903-916. PubMed ID: 30929608 [Abstract] [Full Text] [Related]
37. Effects of passive back-support exoskeletons on physical demands and usability during patient transfer tasks. Hwang J, Kumar Yerriboina VN, Ari H, Kim JH. Appl Ergon; 2021 May; 93():103373. PubMed ID: 33516046 [Abstract] [Full Text] [Related]