These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
152 related items for PubMed ID: 37577403
1. Omics analyses in citrus reveal a possible role of RNA translation pathways and Unfolded Protein Response regulators in the tolerance to combined drought, high irradiance, and heat stress. Balfagón D, Zandalinas SI, Dos Reis de Oliveira T, Santa-Catarina C, Gómez-Cadenas A. Hortic Res; 2023 Jul; 10(7):uhad107. PubMed ID: 37577403 [Abstract] [Full Text] [Related]
2. Involvement of ascorbate peroxidase and heat shock proteins on citrus tolerance to combined conditions of drought and high temperatures. Balfagón D, Zandalinas SI, Baliño P, Muriach M, Gómez-Cadenas A. Plant Physiol Biochem; 2018 Jun; 127():194-199. PubMed ID: 29609175 [Abstract] [Full Text] [Related]
3. Reduction of heat stress pressure and activation of photosystem II repairing system are crucial for citrus tolerance to multiple abiotic stress combination. Balfagón D, Zandalinas SI, Dos Reis de Oliveira T, Santa-Catarina C, Gómez-Cadenas A. Physiol Plant; 2022 Nov; 174(6):e13809. PubMed ID: 36309819 [Abstract] [Full Text] [Related]
4. Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels. Zandalinas SI, Rivero RM, Martínez V, Gómez-Cadenas A, Arbona V. BMC Plant Biol; 2016 Apr 27; 16():105. PubMed ID: 27121193 [Abstract] [Full Text] [Related]
5. Citrus rootstocks modify scion antioxidant system under drought and heat stress combination. Balfagón D, Terán F, de Oliveira TDR, Santa-Catarina C, Gómez-Cadenas A. Plant Cell Rep; 2022 Mar 27; 41(3):593-602. PubMed ID: 34232376 [Abstract] [Full Text] [Related]
6. Activation of Secondary Metabolism in Citrus Plants Is Associated to Sensitivity to Combined Drought and High Temperatures. Zandalinas SI, Sales C, Beltrán J, Gómez-Cadenas A, Arbona V. Front Plant Sci; 2016 Mar 27; 7():1954. PubMed ID: 28119698 [Abstract] [Full Text] [Related]
7. Modulation of Antioxidant Defense System Is Associated with Combined Drought and Heat Stress Tolerance in Citrus. Zandalinas SI, Balfagón D, Arbona V, Gómez-Cadenas A. Front Plant Sci; 2017 Mar 27; 8():953. PubMed ID: 28638395 [Abstract] [Full Text] [Related]
8. High temperatures change the perspective: Integrating hormonal responses in citrus plants under co-occurring abiotic stress conditions. Balfagón D, Zandalinas SI, Gómez-Cadenas A. Physiol Plant; 2019 Feb 27; 165(2):183-197. PubMed ID: 30091288 [Abstract] [Full Text] [Related]
9. Regulation of citrus responses to the combined action of drought and high temperatures depends on the severity of water deprivation. Zandalinas SI, Balfagón D, Arbona V, Gómez-Cadenas A. Physiol Plant; 2018 Apr 27; 162(4):427-438. PubMed ID: 28902955 [Abstract] [Full Text] [Related]
10. Depletion of abscisic acid levels in roots of flooded Carrizo citrange (Poncirus trifoliata L. Raf. × Citrus sinensis L. Osb.) plants is a stress-specific response associated to the differential expression of PYR/PYL/RCAR receptors. Arbona V, Zandalinas SI, Manzi M, González-Guzmán M, Rodriguez PL, Gómez-Cadenas A. Plant Mol Biol; 2017 Apr 27; 93(6):623-640. PubMed ID: 28160166 [Abstract] [Full Text] [Related]
11. Tetraploid citrus rootstocks are more tolerant to salt stress than diploid. Saleh B, Allario T, Dambier D, Ollitrault P, Morillon R. C R Biol; 2008 Sep 27; 331(9):703-10. PubMed ID: 18722990 [Abstract] [Full Text] [Related]
12. Chloride absorption in salt-sensitive Carrizo citrange and salt-tolerant Cleopatra mandarin citrus rootstocks is linked to water use. Moya JL, Gómez-Cadenas A, Primo-Millo E, Talon M. J Exp Bot; 2003 Feb 27; 54(383):825-33. PubMed ID: 12554725 [Abstract] [Full Text] [Related]
13. Antioxidant enzymatic activity is linked to waterlogging stress tolerance in citrus. Arbona V, Hossain Z, López-Climent MF, Pérez-Clemente RM, Gómez-Cadenas A. Physiol Plant; 2008 Apr 27; 132(4):452-66. PubMed ID: 18333999 [Abstract] [Full Text] [Related]
15. Nitrate improves growth in salt-stressed citrus seedlings through effects on photosynthetic activity and chloride accumulation. Iglesias DJ, Levy Y, Gómez-Cadenas A, Tadeo FR, Primo-Millo E, Talon M. Tree Physiol; 2004 Sep 27; 24(9):1027-34. PubMed ID: 15234900 [Abstract] [Full Text] [Related]
16. Nutrient Deficiency Tolerance in Citrus Is Dependent on Genotype or Ploidy Level. Oustric J, Morillon R, Luro F, Herbette S, Martin P, Giannettini J, Berti L, Santini J. Front Plant Sci; 2019 Sep 27; 10():127. PubMed ID: 30853962 [Abstract] [Full Text] [Related]
17. Plant volatile-triggered defense in citrus against biotic stressors. Pérez-Hedo M, Gallego-Giraldo C, Forner-Giner MÁ, Ortells-Fabra R, Urbaneja A. Front Plant Sci; 2024 Sep 27; 15():1425364. PubMed ID: 39049855 [Abstract] [Full Text] [Related]
18. Pangenome-wide analysis of cyclic nucleotide-gated channel (CNGC) gene family in citrus Spp. Revealed their intraspecies diversity and potential roles in abiotic stress tolerance. Zia K, Rao MJ, Sadaqat M, Azeem F, Fatima K, Tahir Ul Qamar M, Alshammari A, Alharbi M. Front Genet; 2022 Sep 27; 13():1034921. PubMed ID: 36303546 [Abstract] [Full Text] [Related]
19. Comparative transcriptomic analyses of citrus cold-resistant vs. sensitive rootstocks might suggest a relevant role of ABA signaling in triggering cold scion adaption. Primo-Capella A, Forner-Giner MÁ, Martínez-Cuenca MR, Terol J. BMC Plant Biol; 2022 Apr 22; 22(1):209. PubMed ID: 35448939 [Abstract] [Full Text] [Related]
20. Recurrent water deficit causes alterations in the profile of redox proteins in citrus plants. Neves DM, Santana-Vieira DDS, Dória MS, Freschi L, Ferreira CF, Soares Filho WDS, Costa MGC, Coelho Filho MA, Micheli F, Gesteira ADS. Plant Physiol Biochem; 2018 Nov 22; 132():497-507. PubMed ID: 30292982 [Abstract] [Full Text] [Related] Page: [Next] [New Search]