These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
148 related items for PubMed ID: 37591387
21. Competitive oxidation of volatile fatty acids by sulfate- and nitrate-reducing bacteria from an oil field in Argentina. Grigoryan AA, Cornish SL, Buziak B, Lin S, Cavallaro A, Arensdorf JJ, Voordouw G. Appl Environ Microbiol; 2008 Jul; 74(14):4324-35. PubMed ID: 18502934 [Abstract] [Full Text] [Related]
22. Elemental sulfur biorecovery from phosphogypsum using oxygen-membrane biofilm reactor: Bioreactor parameters optimization, metagenomic analysis and metabolic prediction of the biofilm activity. Bounaga A, Alsanea A, Danouche M, Rittmann BE, Zhou C, Boulif R, Zeroual Y, Benhida R, Lyamlouli K. Bioresour Technol; 2024 May; 400():130680. PubMed ID: 38593965 [Abstract] [Full Text] [Related]
23. Alleviating sulfide toxicity using biochar during anaerobic treatment of sulfate-laden wastewater. Oliveira FR, Surendra KC, Jaisi DP, Lu H, Unal-Tosun G, Sung S, Khanal SK. Bioresour Technol; 2020 Apr; 301():122711. PubMed ID: 31927459 [Abstract] [Full Text] [Related]
24. Reductive precipitation of sulfate and soluble Fe(III) by Desulfovibrio vulgaris: Electron donor regulates intracellular electron flow and nano-FeS crystallization. Zhou C, Zhou Y, Rittmann BE. Water Res; 2017 Aug 01; 119():91-101. PubMed ID: 28436827 [Abstract] [Full Text] [Related]
25. Carbon‑sulfur coupling in a seasonally hypoxic, high-sulfate reservoir in SW China: Evidence from stable CS isotopes and sulfate-reducing bacteria. Yang M, Liu CQ, Li XD, Ding S, Cui G, Teng HH, Lv H, Wang Y, Zhang X, Guan T. Sci Total Environ; 2022 Jul 01; 828():154537. PubMed ID: 35292324 [Abstract] [Full Text] [Related]
26. Rapid pyritization in the presence of a sulfur/sulfate-reducing bacterial consortium. Berg JS, Duverger A, Cordier L, Laberty-Robert C, Guyot F, Miot J. Sci Rep; 2020 May 19; 10(1):8264. PubMed ID: 32427954 [Abstract] [Full Text] [Related]
27. Dynamic modeling of anaerobic methane oxidation coupled to sulfate reduction: role of elemental sulfur as intermediate. Hatzikioseyian A, Bhattarai S, Cassarini C, Esposito G, Lens PNL. Bioprocess Biosyst Eng; 2021 Apr 19; 44(4):855-874. PubMed ID: 33566183 [Abstract] [Full Text] [Related]
28. Biotransformation of phosphogypsum in media containing different forms of nitrogen. Rzeczycka M, Mycielski R, Kowalski W, Gałazka M. Acta Microbiol Pol; 2001 Apr 19; 50(3-4):281-9. PubMed ID: 11930996 [Abstract] [Full Text] [Related]
29. Toxicity of hydrogen sulfide toward sulfate-reducing bacteria Desulfovibrio piger Vib-7. Kushkevych I, Dordević D, Vítězová M. Arch Microbiol; 2019 Apr 19; 201(3):389-397. PubMed ID: 30707247 [Abstract] [Full Text] [Related]
30. Treatment of real flue gas desulfurization wastewater in an autotrophic biocathode in view of elemental sulfur recovery: Microbial communities involved. Blázquez E, Baeza JA, Gabriel D, Guisasola A. Sci Total Environ; 2019 Mar 20; 657():945-952. PubMed ID: 30677960 [Abstract] [Full Text] [Related]
31. [Effect of ethanol on sulfate reduction and methanogenesis]. Wang Q, Liu B, Yan DD, Li S, Chen ZZ. Huan Jing Ke Xue; 2009 Mar 15; 30(3):924-9. PubMed ID: 19432352 [Abstract] [Full Text] [Related]
32. Substrate competition and microbial function in sulfate-reducing internal circulation anaerobic reactor in the presence of nitrate. Cai MH, Luo G, Li J, Li WT, Li Y, Li AM. Chemosphere; 2021 Oct 15; 280():130937. PubMed ID: 34162109 [Abstract] [Full Text] [Related]
33. Sulfate-reducing bacteria methylate mercury at variable rates in pure culture and in marine sediments. King JK, Kostka JE, Frischer ME, Saunders FM. Appl Environ Microbiol; 2000 Jun 15; 66(6):2430-7. PubMed ID: 10831421 [Abstract] [Full Text] [Related]
34. [Sulfate-Reducing Bacterial Communities in the Water Column of the Gdansk Deep (Baltic Sea)]. Korneeva VA, Pimenov NV, Krek AV, Tourova TP, Bryukhanov AL. Mikrobiologiia; 2015 Jun 15; 84(2):250-60. PubMed ID: 26263632 [Abstract] [Full Text] [Related]
35. Study on the factors of hydrogen sulfide production from lignite bacterial sulfate reduction based on response surface method. Deng Q, Li S, Yao M, Liu C, Zhang Z, Xiang S. Sci Rep; 2023 Nov 23; 13(1):20537. PubMed ID: 37996568 [Abstract] [Full Text] [Related]
36. Biological pre-treatment of wastewater containing sulfate using anaerobic immobilized cells. Kuo WC, Shu TY. J Hazard Mater; 2004 Sep 10; 113(1-3):147-55. PubMed ID: 15363525 [Abstract] [Full Text] [Related]
37. Impact of nitrate-mediated microbial control of souring in oil reservoirs on the extent of corrosion. Nemati M, Jenneman GE, Voordouw G. Biotechnol Prog; 2001 Sep 10; 17(5):852-9. PubMed ID: 11587574 [Abstract] [Full Text] [Related]
38. Anaerobic oxidation of methane coupled to sulfate reduction: Consortium characteristics and application in co-removal of H2S and methane. Li L, Xue S, Xi J. J Environ Sci (China); 2019 Feb 10; 76():238-248. PubMed ID: 30528014 [Abstract] [Full Text] [Related]
39. Implications from distinct sulfate-reducing bacteria populations between cattle manure and digestate in the elucidation of H2S production during anaerobic digestion of animal slurry. St-Pierre B, Wright AG. Appl Microbiol Biotechnol; 2017 Jul 10; 101(13):5543-5556. PubMed ID: 28389712 [Abstract] [Full Text] [Related]