These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Effect of endurance training and acute exercise on sarcoplasmic reticulum function in rat fast- and slow-twitch skeletal muscles. Inashima S, Matsunaga S, Yasuda T, Wada M. Eur J Appl Physiol; 2003 Apr; 89(2):142-9. PubMed ID: 12665977 [Abstract] [Full Text] [Related]
3. Adaptive response of hypertrophied skeletal muscle to endurance training. Riedy M, Moore RL, Gollnick PD. J Appl Physiol (1985); 1985 Jul; 59(1):127-31. PubMed ID: 4030555 [Abstract] [Full Text] [Related]
4. Energy metabolism in contracting rat skeletal muscle: adaptation to exercise training. Constable SH, Favier RJ, McLane JA, Fell RD, Chen M, Holloszy JO. Am J Physiol; 1987 Aug; 253(2 Pt 1):C316-22. PubMed ID: 3618765 [Abstract] [Full Text] [Related]
5. Enzymic and metabolic adaptations in the gastrocnemius, plantaris and soleus muscles of hypocaloric rats. Ardawi MS, Majzoub MF, Masoud IM, Newsholme EA. Biochem J; 1989 Jul 01; 261(1):219-25. PubMed ID: 2775208 [Abstract] [Full Text] [Related]
6. Activation of glycogen phosphorylase by electrical stimulation of isolated fast-twitch and slow-twitch muscles from rat. Chasiotis D, Edström L, Sahlin K, Sjöholm H. Acta Physiol Scand; 1985 Jan 01; 123(1):43-7. PubMed ID: 3969833 [Abstract] [Full Text] [Related]
8. Depletion of muscle and liver glycogen during exercise. Protective effect of training. Baldwin KM, Fitts RH, Booth FW, Winder WW, Holloszy JO. Pflugers Arch; 1975 Nov 01; 354(3):203-12. PubMed ID: 1167678 [Abstract] [Full Text] [Related]
9. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. Holloszy JO, Coyle EF. J Appl Physiol Respir Environ Exerc Physiol; 1984 Apr 01; 56(4):831-8. PubMed ID: 6373687 [Abstract] [Full Text] [Related]
10. Adaptive responses of hypertrophying skeletal muscle to endurance training. Stone J, Brannon T, Haddad F, Qin A, Baldwin KM. J Appl Physiol (1985); 1996 Aug 01; 81(2):665-72. PubMed ID: 8872632 [Abstract] [Full Text] [Related]
11. Effect of caffeine on glycogenolysis during exercise in endurance trained rats. Arogyasami J, Yang HT, Winder WW. Med Sci Sports Exerc; 1989 Apr 01; 21(2):173-7. PubMed ID: 2709979 [Abstract] [Full Text] [Related]
12. Effects of increased training volume on the oxidative capacity, glycogen content and tension development of rat skeletal muscle. Kirwan JP, Costill DL, Flynn MG, Neufer PD, Fink WJ, Morse WM. Int J Sports Med; 1990 Dec 01; 11(6):479-83. PubMed ID: 2286488 [Abstract] [Full Text] [Related]
13. Glucose transporters and maximal transport are increased in endurance-trained rat soleus. Slentz CA, Gulve EA, Rodnick KJ, Henriksen EJ, Youn JH, Holloszy JO. J Appl Physiol (1985); 1992 Aug 01; 73(2):486-92. PubMed ID: 1399970 [Abstract] [Full Text] [Related]
15. Effect of high-intensity exercise training on functional capacity of limb skeletal muscle. Troup JP, Metzger JM, Fitts RH. J Appl Physiol (1985); 1986 May 01; 60(5):1743-51. PubMed ID: 2940217 [Abstract] [Full Text] [Related]
16. High physiological levels of epinephrine do not enhance muscle glycogenolysis during tetanic stimulation. Chesley A, Dyck DJ, Spriet LL. J Appl Physiol (1985); 1994 Aug 01; 77(2):956-62. PubMed ID: 8002553 [Abstract] [Full Text] [Related]
17. Effects of exercise in normoxia and acute hypoxia on respiratory muscle metabolites. Fregosi RF, Dempsey JA. J Appl Physiol (1985); 1986 Apr 01; 60(4):1274-83. PubMed ID: 3700306 [Abstract] [Full Text] [Related]